Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsschalter aus der Retorte

24.04.2003


Abb. 1: Vereinfachte Darstellung des Signalweges, bei dem die Ras- und Raf-Proteine eine entscheidende Rolle spielen.

Grafik: Max-Planck-Institut für molekulare Physiologie


Abb. 2: Übersicht über die Synthese der Proteine Ras und RBD. Acm steht für eine Seitenkettenschutzgruppe, die die Reaktion des ersten Cytstein-Restes im Fragment 51-117 (Nummern der Aminosäurereste) mit dem eigenen C-Terminus verhindert; GppNHp ist ein stabiles Derivat des Guanosintriphosphats (GTP), das an das Ras-Protein bindet, aber nicht hydrolysiert wird.

Grafik: Max-Planck-Institut für molekulare Physiologie


Max-Planck-Forschern gelingt erstmals chemische Synthese von zwei komplexen Proteinen, die für Zellwachstum, Zellteilung und Krebs verantwortlich sind


Proteine gezielt chemisch herzustellen war bisher aus technischen Gründen nur auf kleine Moleküle beschränkt. Neue Fortschritte in der chemischen Synthese erlauben nun das Verknüpfen von mehreren Protein-Fragmenten, so dass auch größere Proteine synthetisiert werden können. Wissenschaftler des Max-Planck-Instituts für Molekulare Physiologie in Dortmund und der University of Chicago konnten jetzt erstmalig zwei miteinander wechselwirkende Proteine, das Ras-Protein und die Ras-bindende Domäne des Raf-Proteins, vollsynthetisch herstellen. Das Ras-Protein ist ein wichtiger Schalter in allen menschlichen Zellen, der bei einem Defekt wesentlich zur Entstehung von Krebs beiträgt. Die künstliche Herstellung der beiden Proteine eröffnet neue Möglichkeiten, um ihre biologisch bedeutsame Wechselwirkung besser untersuchen und zum Beispiel einen Test für das Vorhandensein pathologisch veränderter Ras-Proteine entwickeln zu können (PNAS Online, 18. April 2003).

Die Fähigkeit, biologische Moleküle mit den Methoden der synthetischen Chemie herzustellen, ist eine bedeutende Errungenschaft der modernen Wissenschaft. Doch trotz eindrucksvoller Synthesen in den vergangenen Jahrzehnten war das mit den wichtigsten biologischen Makromolekülen, den Nukleinsäuren und Proteinen, nur begrenzt möglich. Moderne molekularbiologische Methoden erlauben es heute zwar, Proteine in relativ großen Mengen sogar im Industriemaßstab herzustellen. Doch diese Techniken haben den Nachteil, dass dabei in die Proteine - mit wenigen Ausnahmen - nur natürlich vorkommende Aminosäuren eingebaut werden können. Die Möglichkeit, auch andere Aminosäuren zu integrieren, würde ein erheblich erweitertes Anwendungsspektrum für diese Proteine ermöglichen. Beispiele, die für die Grundlagenforschung von Interesse wären, sind der Einbau von Aminosäuren mit sogenannten "Reporter-Gruppen" oder "Reporter-Atomen" an ganz spezifischen Stellen eines Proteins, der Einbau von chemischen Gruppen mit grundsätzlich anderen Eigenschaften als Aminosäuren oder der Einbau von "Anker-Gruppen", um Proteine gezielt auf Oberflächen (zum Beispiel von Biochips) zu fixieren. Ein anderes Einsatzgebiet ist die Herstellung von Proteinen in ihrer "reifen" Form, etwa mit angehefteten Lipid- oder Zucker-Restgruppen, die sonst für die Untersuchung mit molekularbiologischen Methoden nur schwer zugänglich sind. Zu möglichen praktischen Anwendungen gehören die bereits erwähnten Biochips (Proteinchips) beispielsweise für die Diagnostik, Enzyme mit neuartigen katalytischen Eigenschaften oder Arzneimittel aus stabileren und deshalb wirksameren Abkömmlingen der natürlichen Proteine.


In den letzten Jahrzehnten sind enorme Fortschritte auf dem Gebiet der Proteinsynthese gemacht worden, die es prinzipiell ermöglichen, das ganze Arsenal der Chemie für die Modifizierung von Proteinen zu nutzen. Allerdings waren Bemühungen zur Synthese von großen Proteinen bis vor einigen Jahren wenig erfolgreich, weil es mit chemischen Methoden nicht gelang, Proteinketten mit mehr als etwa 70 Aminosäuren herzustellen. Doch nur wenige biologisch interessante Proteine sind so klein, so dass der synthetische Zugang zu den meisten der Hunderttausende in der Natur vorkommenden Proteine verwehrt schien. Erst in den letzten Jahren wurden Methoden entwickelt, die das Zusammenkleben ("Ligation") von kleineren Proteinfragmenten erlauben, so dass prinzipiell auch erheblich größere Proteine hergestellt werden können.

Wissenschaftlern des Max-Planck-Instituts für molekulare Physiologie in Dortmund ist es jetzt - zusammen mit einer Gruppe an der University of Chicago - gelungen, zwei Proteine vollsynthetisch herzustellen, die in der Natur eine wichtige Wechselwirkung eingehen: das Ras-Protein (das Proteinprodukt eines so genannten Protooncogens) und den Ras-bindenden Bereich des Raf-Protein. Das Raf-Protein ist eine so genannte Proteinkinase, die ein Signal in Form einer Phosphatgruppe auf ein anderes Protein übertragen kann. Das Ras-Protein funktioniert als wichtiger molekularer Schalter innerhalb aller menschlichen Zellen und gibt im "aktivierten" Zustand ein Signal an das Raf-Protein weiter. Dieses Signal führt über mehrere Folgereaktionen zur Aktivierung von Zellwachstum und Zellteilung (Abb. 1). Schon seit geraumer Zeit ist bekannt, dass defekte Ras-Proteine, die dieses Signal auch ohne einen äußeren Reiz an die Zelle ständig weitergeben, wesentlich zur Entstehung von Krebs beitragen, da die Zellproliferation außer Kontrolle gerät. So werden Mutationen im Ras-Gen zu einem hohen Prozentsatz bei menschlichen Tumoren gefunden.

Die Dortmunder und Chicagoer Wissenschaftler haben damit erstmals gezeigt, dass die chemische Synthese von zwei in der Natur wechselwirkenden Proteinen zu einem biologisch komplett funktionstüchtigen Proteinpaar führen kann. Dies belegen die Thermodynamik und Art der Wechselwirkung zwischen beiden Proteinen, die sich von den Eigenschaften vergleichbarer biologisch synthetisierter Proteine nicht unterscheiden. Eine schematische Darstellung der Synthese zeigt Abb. 2. Das Ras-Protein wird wegen seiner Länge (166 Aminosäuren) aus drei, das RBD-Protein aus zwei Fragmenten durch Synthese auf einer festen Phase hergestellt. Damit die Ligationsreaktion zu einer natürlichen Peptidbindung führt, müssen die Enden der Fragmente, die miteinander verknüpft werden sollen, chemisch in entsprechender Form vorliegen, genauer der C-Terminus des N-terminalen Fragments muss als Thioester vorliegen und die erste Aminosäure des folgenden Fragments als ein Cysteinrest. Nach der Ligation der Fragmente entstehen lange Proteinketten, die zunächst noch nicht in ihrer natürlichen Form vorliegen, da sie nicht korrekt "gefaltet" sind. Diese Faltung der Proteine gelingt jedoch mit relativ einfachen Methoden in wässriger Lösung, so dass voll funktionsfähige Proteine entstehen.

Nach der Umsetzung dieses Grundschemas zur Herstellung der beiden Proteine können die Wissenschaftler nun die Proteine gezielt gegenüber ihren natürlichen Strukturen verändern. So ist es ihnen bereits gelungen, eine Art "Reporter-Gruppe" (einen fluoreszierenden Rest) an einer bestimmten Stelle des Raf-Proteins einzuführen, um das Vorhandensein des Ras-Proteins in seiner aktivierten Form anzuzeigen (Becker,C.F., Hunter,C.L., Seidel,R.P., Kent,S.B., Goody,R.S., and Engelhard,M. (2001). A sensitive fluorescence monitor for the detection of activated Ras: total chemical synthesis of site-specifically labeled Ras binding domain of c-Raf1 immobilized on a surface. Chem.Biol. 8, 243-252.) Auf dieser Basis wollen die Forscher nun einen Test zur Anzeige pathologisch (d.h. krankhaft) veränderter Ras-Proteine entwickeln.

Originalveröffentlichung:

Becker,C.F., Hunter,C.L., Seidel,R.P., Kent,S.B., Goody,R.S., and Engelhard,M. (2002). Total chemical synthesis of a functional interacting protein pair: the proto-oncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc.Natl.Acad.Sci.U.S.A 100


Weitere Informationen erhalten Sie von:

Prof. Roger Goody
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.:0231 133 2300
Fax:0231 133 2399
E-Mail: goody@mpi-dortmund.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri03/pri0341.htm

Weitere Berichte zu: Aminosäure Protein Raf-Protein Ras-Protein Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie