Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Studie: Langgesuchtes Molekül wird sichtbar

21.03.2001


... mehr zu:
»Erzeugung »Molekül »Teilchen »Weltraum
RUB-Studie: Chemie bei Eiseskälte
Maßgeblich für verschiedene Lebensbereiche

Was hat die Chemie des Weltalls mit der Krebsentstehung in biologischen Systemen gemeinsam? - In beiden Fällen bestimmen kurzlebige und reaktive Moleküle das Geschehen auf molekularer Ebene. Eine der grundlegenden reaktiven Zwischenstufen der Organischen Chemie ist das Phenylkation, dessen Existenz in kondensierter (nicht gasförmiger) Phase bisher nur theoretisch vorhergesagt wurde. Der direkte Nachweis gelang nun Dipl. Chem. Michael Winkler in seiner Diplomarbeit "Photoionisation von Arylradikalen in kryogenen Matrizes. Matrixisolation des Phenylkations und verwandter Systeme" (Betreuer: Prof. Dr. Wolfram Sander). Für seine Arbeit wurde er mit einem der Preise an Studierende 2000 der RUB ausgezeichnet.

Geladene Teilchen sind schwierig zu untersuchen

Während einer chemischen Reaktion entstehen häufig Zwischenprodukte, die sehr kurzlebig sind, und die sich daher mit klassischen spektroskopischen Methoden nur schlecht direkt beobachten lassen. Zur Lösung dieses Problems bieten sich zwei Ansätze an: Sehr schnell hinschauen, das ist der Ansatz der so genannten zeitaufgelösten Spektroskopie, für deren Perfektionierung 1999 der Nobelpreis (an A.H. Zewail) verliehen wurde. Eine andere Möglichkeit ist die Erzeugung des reaktiven Moleküls in einem unreaktiven Medium. Für Neutralmoleküle hat sich die Isolation in festen Edelgaskristallen bei sehr tiefen Temperaturen bewährt. Bei dieser "Matrixisolationsspektroskopie" ist das reaktive Teilchen in einen Edelgasverband eingeschlossen wie die Rosinen in einem Milchbrötchen. Geladene Teilchen konnten bisher nur in wenigen Einzelfällen in Edelgaskristalle eingebracht werden. Positiv geladene Teilchen (Kationen) können zwar oft in so genannten "Supersäuren" - für ihre Entwicklung gab es wiederum einen Nobelpreis (1994, an G. A. Olah) - ausreichend lange stabilisiert werden, um sie klassischen Untersuchungsmethoden zugänglich zu machen, das hochreaktive Phenylkation entzog sich bislang jedoch jeder Detektion in kondensierter Phase.

Schockgefrorene Moleküle

Hier setzt Winklers Strategie an: Mit Hilfe von Mikrowellen erhitzte er das Edelgas Argon so stark, dass daraus ein Edelgasplasma entstand, das er durch ein Rohr auf eine sehr kalte Scheibe schoss. Kurz vor der Scheibe fügte er einen Vorläufer des zu untersuchenden Moleküls hinzu. Die beiden Stoffe mischten sich und wurden auf der Scheibe bei -263°C schockgefroren. Das isolierte geladene Molekül befand sich in einem Argonkristall und ließ sich untersuchen.

Vom Weltraum bis zur Biochemie

Die Ergebnisse dieser Grundlagenforschung können helfen, viele Lebensbereiche besser zu verstehen. Denn sowohl die Chemie des Weltraums als auch die Biochemie werden von geladenen Molekülen dominiert. Im Weltraum bietet das interstellare Vakuum, auf der Erde polare Medien wie etwa Wasser einen idealen Lebensraum für hochreaktive Kationen. Arylkationen (d.h. positiv geladene Teilchen, die sich formal von Benzolderivaten ableiten) belegen in beiden Fällen Schlüsselpositionen. So wird die "Deaminierung" von DNA-Basenpaaren und die Abreaktion von dadurch gebildeten Arylkationen schon seit langem als wichtiger Mechanismus der Krebsentstehung diskutiert. Neben einem besseren Verständnis der grundlegenden Prozesse dieser Bereiche erhoffen sich Winkler und Sander interessante Impulse für andere (besonders materialwissenschaftlich orientierte) Bereiche, z. B. für ein besseres Verständnis der plasmagestützten Erzeugung von Silicium-Carbid-Oberflächen aus siliciumorganischen Verbindungen. Sie verläuft mit großer Wahrscheinlichkeit über Silylkationen, die bisher ebenfalls keiner direkten Untersuchung zugänglich waren.

Weitere Informationen

Dipl. Chem. Michael Winkler, Ruhr-Universität Bochum, Fakultät für Chemie, Arbeitskreis Sander, Lehrstuhl für Organische Chemie II, 44780 Bochum, Tel. 0234/32-27884, E-Mail:  micha@xenon.orch.ruhr-uni-bochum.de

Dr. Josef König | idw

Weitere Berichte zu: Erzeugung Molekül Teilchen Weltraum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie