Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein zum Verständnis der Photosynthese

21.02.2001


Fotosynthese


Berliner Forschern gelang es erstmals, die Struktur des sauerstoffentwickelnden Photosystems II zu ermitteln / Veröffentlichung in Nature am 8. Februar 2001

Grüne Pflanzen, Algen und Cyanobakterien (Blaualgen) gewinnen ihre Energie durch die Photosynthese. Mit Hilfe des Sonnenlichtes wandeln sie Kohlendioxid und Wasser in Zucker sowie Sauerstoff um. Die Photosynthese arbeitet mit einer erstaunlichen primären Energieausbeute von mehr als 80 Prozent. Solarzellen, die heute im Einsatz sind, kommen auf einen viel niedrigeren Wirkungsgrad, der bei rund 30 Prozent liegt. Eine Vision vieler Wissenschaftler ist es daher, die Prinzipien der Photosynthese zu entschlüsseln und sie für die Energiegewinnung nutzbar zu machen. Dieser Prozess ist nicht nur hocheffizient, sondern auch regenerierbar und völlig umweltfreundlich. Die chemische Grundgleichung ist sehr einfach, der Mechanismus jedoch äußerst kompliziert und noch nicht vollständig aufgeklärt.

Berliner Wissenschaftlern des Max-Volmer-Instituts für Biophysikalische Chemie und Biochemie der Technischen Universität Berlin und des Instituts für Chemie, Kristallographie, der Freien Universität Berlin ist es gemeinsam gelungen, das Membranprotein Photosystem II, das den gesamten Sauerstoff in der Atmosphäre erzeugt, aus der Photosynthesemembran der Blaualge Synechococcus elongatus zu isolieren, zu kristallisieren und mit Hilfe von Röntgenstrahlen die Struktur zu ermitteln.

Innerhalb des Sonderforschungsbereiches "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen" beschäftigen sich die Wissenschaftlerinnen und Wissenschaftler mit den am Prozess der Photosynthese beteiligten Proteinen. Im Zentrum stehen dabei die zwei großen Protein-Komplexe Photosystem I und II, die in der Photosynthese-Membran liegen. Die Photosysteme können als molekulare Maschinen betrachtet werden, die die Energie des Sonnenlichtes einfangen und in biochemisch nutzbare Energie umwandeln.

Im Photosystem II finden die ersten Teilschritte der Photosynthese statt. Hier werden den Wassermolekülen mit Hilfe der Lichtenergie Elektronen "entzogen" und Sauerstoff in die Atmosphäre freigesetzt. Die Elektronen werden über die Membran transportiert und dort auf ein organisches "Empfängermolekül", ein Chinon, übertragen. Der Protein-Komplex besteht aus einem zentralen Bereich mit einem Reaktionszentrum, einem sauerstoffentwicklenden Komplex und aus einem sogenannten Antennenkomplex. Die dort angeordneten Chlorophyll-Moleküle fangen die Lichtenergie ein.

Kristalle des Photosystems II, die an der TU Berlin gezüchtet wurden, bilden die Basis für die Strukturbestimmung. Dabei ist das Protein in den Kristallen voll aktiv, d.h. bei Belichtung steigen von der Oberfläche der Kristalle Sauerstoffbläschen auf.

Die nun vorliegende Struktur des Photosystems II besteht aus 17 Protein-Untereinheiten, von denen 14 innerhalb der Membran liegen. Sie ermöglicht zwar nicht den Blick auf jedes einzelne Atom, wohl aber auf Atomverbände und gibt damit genaue Details der Tertiär- und Quartiärstruktur preis. Eindeutig konnten auch Positionen und Struktur mehrerer Kofakto-ren, beispielsweise von drei Eisen-Atomen oder von 32 Chlorophyllen bestimmt sowie erste Strukturinformationen über den sauerstoffentwickelnden Komplex gewonnen werden. Letzterer besteht aus einem Cluster von vier Mangan-Atomen. Damit ist ein Meilenstein zum Verständnis der Photosynthese und der Wasserspaltung erreicht.

Am 8. Februar 2001 wurden die Forschungsergebnisse in Nature (A. Zouni, H. T. Witt, J. Kern, P. Fromme, N. Krauß, W. Saenger, P. Orth, Nature 409, 739) publiziert. Die Deutsche Forschungsgemeinschaft (DFG) fördert diese Grundlagenforschung im Rahmen des Sonderforschungsbereiches 498 "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen", dessen Sprecherhochschule die TU Berlin ist. An dem Photosystem-II-Projekt waren die beiden Arbeitsgruppen um Prof. Dr. Horst-T. Witt und Privatdozentin Dr. Petra Fromme der TU Berlin sowie um Prof. Dr. Wolfram Saenger und Dr. Norbert Krauß vom Institut für Chemie/Kristallographie der Freien Universität Berlin beteiligt.

Die Forschungsprojekte sollen zum besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie beitragen. Eine notwendige Voraussetzung, um umwelt- und ressourcenschonende Energieformen für die Zukunft entwickeln zu können. Die Natur macht es in raffinierter Weise vor.

Weitere Informationen erteilt ihnen gern: Prof. Dr. Wolfgang Lubitz (Sprecher SfB 498 "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen"), Dr. Athina Zouni, Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Tel.: 030/314-21419, -25580, -26403 Fax: 030/314-21122, E-Mail: lubitz@echo.chem.tu-berlin.de, zouni@phosis1.chem.tu-berlin.de

Ramona Ehret | idw

Weitere Berichte zu: Lichtenergie Meilenstein Photosynthese Photosystem Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften