Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein zum Verständnis der Photosynthese

21.02.2001


Fotosynthese


Berliner Forschern gelang es erstmals, die Struktur des sauerstoffentwickelnden Photosystems II zu ermitteln / Veröffentlichung in Nature am 8. Februar 2001

Grüne Pflanzen, Algen und Cyanobakterien (Blaualgen) gewinnen ihre Energie durch die Photosynthese. Mit Hilfe des Sonnenlichtes wandeln sie Kohlendioxid und Wasser in Zucker sowie Sauerstoff um. Die Photosynthese arbeitet mit einer erstaunlichen primären Energieausbeute von mehr als 80 Prozent. Solarzellen, die heute im Einsatz sind, kommen auf einen viel niedrigeren Wirkungsgrad, der bei rund 30 Prozent liegt. Eine Vision vieler Wissenschaftler ist es daher, die Prinzipien der Photosynthese zu entschlüsseln und sie für die Energiegewinnung nutzbar zu machen. Dieser Prozess ist nicht nur hocheffizient, sondern auch regenerierbar und völlig umweltfreundlich. Die chemische Grundgleichung ist sehr einfach, der Mechanismus jedoch äußerst kompliziert und noch nicht vollständig aufgeklärt.

Berliner Wissenschaftlern des Max-Volmer-Instituts für Biophysikalische Chemie und Biochemie der Technischen Universität Berlin und des Instituts für Chemie, Kristallographie, der Freien Universität Berlin ist es gemeinsam gelungen, das Membranprotein Photosystem II, das den gesamten Sauerstoff in der Atmosphäre erzeugt, aus der Photosynthesemembran der Blaualge Synechococcus elongatus zu isolieren, zu kristallisieren und mit Hilfe von Röntgenstrahlen die Struktur zu ermitteln.

Innerhalb des Sonderforschungsbereiches "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen" beschäftigen sich die Wissenschaftlerinnen und Wissenschaftler mit den am Prozess der Photosynthese beteiligten Proteinen. Im Zentrum stehen dabei die zwei großen Protein-Komplexe Photosystem I und II, die in der Photosynthese-Membran liegen. Die Photosysteme können als molekulare Maschinen betrachtet werden, die die Energie des Sonnenlichtes einfangen und in biochemisch nutzbare Energie umwandeln.

Im Photosystem II finden die ersten Teilschritte der Photosynthese statt. Hier werden den Wassermolekülen mit Hilfe der Lichtenergie Elektronen "entzogen" und Sauerstoff in die Atmosphäre freigesetzt. Die Elektronen werden über die Membran transportiert und dort auf ein organisches "Empfängermolekül", ein Chinon, übertragen. Der Protein-Komplex besteht aus einem zentralen Bereich mit einem Reaktionszentrum, einem sauerstoffentwicklenden Komplex und aus einem sogenannten Antennenkomplex. Die dort angeordneten Chlorophyll-Moleküle fangen die Lichtenergie ein.

Kristalle des Photosystems II, die an der TU Berlin gezüchtet wurden, bilden die Basis für die Strukturbestimmung. Dabei ist das Protein in den Kristallen voll aktiv, d.h. bei Belichtung steigen von der Oberfläche der Kristalle Sauerstoffbläschen auf.

Die nun vorliegende Struktur des Photosystems II besteht aus 17 Protein-Untereinheiten, von denen 14 innerhalb der Membran liegen. Sie ermöglicht zwar nicht den Blick auf jedes einzelne Atom, wohl aber auf Atomverbände und gibt damit genaue Details der Tertiär- und Quartiärstruktur preis. Eindeutig konnten auch Positionen und Struktur mehrerer Kofakto-ren, beispielsweise von drei Eisen-Atomen oder von 32 Chlorophyllen bestimmt sowie erste Strukturinformationen über den sauerstoffentwickelnden Komplex gewonnen werden. Letzterer besteht aus einem Cluster von vier Mangan-Atomen. Damit ist ein Meilenstein zum Verständnis der Photosynthese und der Wasserspaltung erreicht.

Am 8. Februar 2001 wurden die Forschungsergebnisse in Nature (A. Zouni, H. T. Witt, J. Kern, P. Fromme, N. Krauß, W. Saenger, P. Orth, Nature 409, 739) publiziert. Die Deutsche Forschungsgemeinschaft (DFG) fördert diese Grundlagenforschung im Rahmen des Sonderforschungsbereiches 498 "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen", dessen Sprecherhochschule die TU Berlin ist. An dem Photosystem-II-Projekt waren die beiden Arbeitsgruppen um Prof. Dr. Horst-T. Witt und Privatdozentin Dr. Petra Fromme der TU Berlin sowie um Prof. Dr. Wolfram Saenger und Dr. Norbert Krauß vom Institut für Chemie/Kristallographie der Freien Universität Berlin beteiligt.

Die Forschungsprojekte sollen zum besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie beitragen. Eine notwendige Voraussetzung, um umwelt- und ressourcenschonende Energieformen für die Zukunft entwickeln zu können. Die Natur macht es in raffinierter Weise vor.

Weitere Informationen erteilt ihnen gern: Prof. Dr. Wolfgang Lubitz (Sprecher SfB 498 "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen"), Dr. Athina Zouni, Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Tel.: 030/314-21419, -25580, -26403 Fax: 030/314-21122, E-Mail: lubitz@echo.chem.tu-berlin.de, zouni@phosis1.chem.tu-berlin.de

Ramona Ehret | idw

Weitere Berichte zu: Lichtenergie Meilenstein Photosynthese Photosystem Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Korallenthermometer muss neu justiert werden
23.09.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt
23.09.2016 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einsteins Geburtsstadt wird für eine Woche Hauptstadt der Physik

23.09.2016 | Veranstaltungen

Industrie und Wissenschaft diskutieren künftigen Mobilfunk-Standard 5G auf Tagung in Kassel

23.09.2016 | Veranstaltungen

Fachgespräch Feste Biomasse diskutiert Fragen zum Thema "Qualitätshackschnitzel"

23.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Korallenthermometer muss neu justiert werden

23.09.2016 | Biowissenschaften Chemie

Doppel-Infektion macht Erreger aggressiver

23.09.2016 | Biowissenschaften Chemie

Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

23.09.2016 | Biowissenschaften Chemie