Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Was das Pflanzenprotein im Nadelöhr macht"

02.04.2003


Neuer Mechanismus für Membran-Transport in Zelle entdeckt



Chloroplasten sind wichtige Bestandteile von Pflanzenzellen und von zwei Membranen umgeben. Die meisten Proteine, also Eiweißbausteine, der Chloroplasten werden im Zellkern kodiert, im Zellinneren synthetisiert und müssen dann durch diese Doppelmembran geschleust werden. Es sind mehrere Membranproteine bekannt, die dabei eine Rolle spielen. Der Mechanismus des Transportvorganges selbst ist unverstanden. Prof. Jürgen Soll und zwei Mitarbeiter vom Department Biologie I, Botanik, haben nun ein Protein identifiziert, das als molekularer Motor andere Proteine durch die Chloroplasten-Membranen schleust, wobei ein bislang unbekannter Mechanismus zugrunde liegt. Die Veröffentlichung ist online in den Proceedings of the National Academy of Sciences erschienen. Eine Druckversion wird in etwa zwei Wochen folgen (PNAS, Bd. 100, S. 4604 - 4609, 2003). Die Wissenschaftler hatten vor einigen Jahren das Protein Toc75 identifiziert, welches sich wie ein Tunnel durch die Doppelmembran zieht und neue Chloroplasten-Proteine in das Innere der Organellen läßt. Wie dieser Vorgang aber angetrieben wird, war bislang unklar. Nun konnte das Team um Soll zeigen, dass eine kleine Proteinmaschinerie dafür verantwortlich ist. Toc159 bindet an neu synthetisierte Chloroplasten-Proteine und schiebt diese dann Stück für Stück durch den Kanal Toc75. "Der Prozess ähnelt ein wenig dem Nähen mit einer Nähmaschine", erklärt Soll. "Toc159 ist dabei die Nadel mit Motor, das zu transportierende Protein ist der Faden, und das Kanalprotein in der Membran ist der Stoff."



Einige Bestandteile von höheren Zellen verfügen über eigenes genetisches Material. Dazu gehören auch die Photosynthese betreibenden Chloroplasten. Allerdings werden die meisten Chloroplasten-Proteine mit nur wenigen Ausnahmen von der DNA im Zellkern kodiert und im Zellinneren synthetisiert. Deshalb müssen diese Proteine auch erst die Doppelmembran der Chloroplasten überwinden, um an ihren Bestimmungsort zu gelangen. Tunnelförmige Kanalproteine, die die beiden Membranen durchziehen, sind das "Eingangstor" für diese neu synthetisierten Proteine.

Soll und seine Mitarbeiter haben vor einiger Zeit das Kanalprotein Toc75 in der Außenmembran der Chloroplasten identifiziert. Wie eine Pore verbindet es das Innere der Zelle mit dem Inneren der Organelle und schleust Chloroplasten-Proteine ein. Die treibende Kraft hinter diesem Vorgang ist das neu entdeckte Protein Toc159, wie das Team um Soll jetzt in vitro zeigen konnte. Bislang unbekannt war allerdings der genaue Mechanismus, wie ein neu synthetisiertes Chloroplasten-Protein zu Toc159 gelangt und von diesem dann durch das Kanalprotein Toc75 "gefädelt" wird.

Die Wissenschaftler vermuten, dass Toc159 das neu synthetisierte Chloroplasten-Protein Stück für Stück durch den Kanal drückt. Vergleichbar ist dieser Mechanismus der Funktionsweise einer Nähmaschine, die den Faden auch in kleinen Abschnitten durch den Stoff fädelt. Die Forscher schlagen einen Mechanismus vor, bei dem zunächst das neu synthetisierte Chloroplasten-Protein von dem Membran-gebundenen Toc159 gehalten wird. Dadurch wird eine energiereiche Einheit, die ebenfalls an diesen molekularen Motor bindet, gespalten. Das setzt genug Energie frei, um einen Teil von Toc159 auf den Membrankanal zuzubewegen und einen Abschnitt des Chloroplasten-Proteins hineinzudrücken. Wird die Bindung gelöst, kann eine neue Runde beginnen: Ein weiter hinten liegender Abschnitt des Chloroplasten-Proteins bindet an Toc159, Energie wird freigesetzt, und der "Faden" ein Stück weiter in den Kanal geschoben.

Proteine können ihre Funktion nur ausführen, wenn sie eine charakteristische, dreidimensionale Form angenommen haben. Sie werden von bestimmten Organellen im Zellinneren, so genannten Ribosomen, zusammengesetzt. Zunächst wird ein Baustein an den anderen gehängt, so dass eine lange Kette entsteht. Aber schon während der Synthese am Ribosom beginnt die Faltung des Proteins. Neue Proteine, die in das Innere von Chloroplasten gelangen müssen, dürfen sich nicht falten. Denn dann passen sie nicht durch die engen Kanalproteine. Bei den bislang bekannten Mechanismen sorgen bestimmte Proteine, die Chaperone, während der Synthese und auch danach dafür, dass sich die neu gebauten Proteine nicht falten. Dadurch ähneln diese einem langen, dünnen Faden und können leichter durch enge Membranporen geschleust werden. Im neuen Modell spielen Chaperone keine Rolle. Es ist allerdings noch unklar, ob Toc159 die Proteine selbst während ihrer Synthese bindet und im ungefalteten Zustand hält, oder ob sie von einem anderen Trägerprotein an die Chloroplasten-Membran zu Toc159 gebracht werden.

Ansprechpartner:

Prof. Dr. Jürgen Soll
Department Biologie I, Botanik
Tel. 089/17861-245,-244
Fax. 089/17861-185
E-mail: soll@uni-muenchen.de

Cornelia Glees-zur Bonsen | idw

Weitere Berichte zu: Chloroplasten Chloroplasten-Protein Kanalprotein Protein Toc159 Toc75

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE