Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Was das Pflanzenprotein im Nadelöhr macht"

02.04.2003


Neuer Mechanismus für Membran-Transport in Zelle entdeckt



Chloroplasten sind wichtige Bestandteile von Pflanzenzellen und von zwei Membranen umgeben. Die meisten Proteine, also Eiweißbausteine, der Chloroplasten werden im Zellkern kodiert, im Zellinneren synthetisiert und müssen dann durch diese Doppelmembran geschleust werden. Es sind mehrere Membranproteine bekannt, die dabei eine Rolle spielen. Der Mechanismus des Transportvorganges selbst ist unverstanden. Prof. Jürgen Soll und zwei Mitarbeiter vom Department Biologie I, Botanik, haben nun ein Protein identifiziert, das als molekularer Motor andere Proteine durch die Chloroplasten-Membranen schleust, wobei ein bislang unbekannter Mechanismus zugrunde liegt. Die Veröffentlichung ist online in den Proceedings of the National Academy of Sciences erschienen. Eine Druckversion wird in etwa zwei Wochen folgen (PNAS, Bd. 100, S. 4604 - 4609, 2003). Die Wissenschaftler hatten vor einigen Jahren das Protein Toc75 identifiziert, welches sich wie ein Tunnel durch die Doppelmembran zieht und neue Chloroplasten-Proteine in das Innere der Organellen läßt. Wie dieser Vorgang aber angetrieben wird, war bislang unklar. Nun konnte das Team um Soll zeigen, dass eine kleine Proteinmaschinerie dafür verantwortlich ist. Toc159 bindet an neu synthetisierte Chloroplasten-Proteine und schiebt diese dann Stück für Stück durch den Kanal Toc75. "Der Prozess ähnelt ein wenig dem Nähen mit einer Nähmaschine", erklärt Soll. "Toc159 ist dabei die Nadel mit Motor, das zu transportierende Protein ist der Faden, und das Kanalprotein in der Membran ist der Stoff."



Einige Bestandteile von höheren Zellen verfügen über eigenes genetisches Material. Dazu gehören auch die Photosynthese betreibenden Chloroplasten. Allerdings werden die meisten Chloroplasten-Proteine mit nur wenigen Ausnahmen von der DNA im Zellkern kodiert und im Zellinneren synthetisiert. Deshalb müssen diese Proteine auch erst die Doppelmembran der Chloroplasten überwinden, um an ihren Bestimmungsort zu gelangen. Tunnelförmige Kanalproteine, die die beiden Membranen durchziehen, sind das "Eingangstor" für diese neu synthetisierten Proteine.

Soll und seine Mitarbeiter haben vor einiger Zeit das Kanalprotein Toc75 in der Außenmembran der Chloroplasten identifiziert. Wie eine Pore verbindet es das Innere der Zelle mit dem Inneren der Organelle und schleust Chloroplasten-Proteine ein. Die treibende Kraft hinter diesem Vorgang ist das neu entdeckte Protein Toc159, wie das Team um Soll jetzt in vitro zeigen konnte. Bislang unbekannt war allerdings der genaue Mechanismus, wie ein neu synthetisiertes Chloroplasten-Protein zu Toc159 gelangt und von diesem dann durch das Kanalprotein Toc75 "gefädelt" wird.

Die Wissenschaftler vermuten, dass Toc159 das neu synthetisierte Chloroplasten-Protein Stück für Stück durch den Kanal drückt. Vergleichbar ist dieser Mechanismus der Funktionsweise einer Nähmaschine, die den Faden auch in kleinen Abschnitten durch den Stoff fädelt. Die Forscher schlagen einen Mechanismus vor, bei dem zunächst das neu synthetisierte Chloroplasten-Protein von dem Membran-gebundenen Toc159 gehalten wird. Dadurch wird eine energiereiche Einheit, die ebenfalls an diesen molekularen Motor bindet, gespalten. Das setzt genug Energie frei, um einen Teil von Toc159 auf den Membrankanal zuzubewegen und einen Abschnitt des Chloroplasten-Proteins hineinzudrücken. Wird die Bindung gelöst, kann eine neue Runde beginnen: Ein weiter hinten liegender Abschnitt des Chloroplasten-Proteins bindet an Toc159, Energie wird freigesetzt, und der "Faden" ein Stück weiter in den Kanal geschoben.

Proteine können ihre Funktion nur ausführen, wenn sie eine charakteristische, dreidimensionale Form angenommen haben. Sie werden von bestimmten Organellen im Zellinneren, so genannten Ribosomen, zusammengesetzt. Zunächst wird ein Baustein an den anderen gehängt, so dass eine lange Kette entsteht. Aber schon während der Synthese am Ribosom beginnt die Faltung des Proteins. Neue Proteine, die in das Innere von Chloroplasten gelangen müssen, dürfen sich nicht falten. Denn dann passen sie nicht durch die engen Kanalproteine. Bei den bislang bekannten Mechanismen sorgen bestimmte Proteine, die Chaperone, während der Synthese und auch danach dafür, dass sich die neu gebauten Proteine nicht falten. Dadurch ähneln diese einem langen, dünnen Faden und können leichter durch enge Membranporen geschleust werden. Im neuen Modell spielen Chaperone keine Rolle. Es ist allerdings noch unklar, ob Toc159 die Proteine selbst während ihrer Synthese bindet und im ungefalteten Zustand hält, oder ob sie von einem anderen Trägerprotein an die Chloroplasten-Membran zu Toc159 gebracht werden.

Ansprechpartner:

Prof. Dr. Jürgen Soll
Department Biologie I, Botanik
Tel. 089/17861-245,-244
Fax. 089/17861-185
E-mail: soll@uni-muenchen.de

Cornelia Glees-zur Bonsen | idw

Weitere Berichte zu: Chloroplasten Chloroplasten-Protein Kanalprotein Protein Toc159 Toc75

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie