Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinfaltung am Computer

15.02.2001


Proteine - nur richtig gefaltet funktionieren sie

Wie Schlüssel und Schloss müssen Substrat und Enzym passgenau harmonieren, damit eine enzymatische Reaktion ablaufen kann. Entscheidend für die Funktion eines Enzyms und eines jeden Proteins ist dessen räumliche Struktur. Die Kette aus Aminosäuren, aus der ein Protein besteht, muss sich dazu in einer ganz bestimmten Art und Weise falten. Dabei darf nichts schief gehen. Die Rinderseuche BSE etwa soll auf einem falsch gefalteten Protein beruhen. Wie der Faltungsprozess von Proteinen auf atomarer Ebene abläuft, ist experimentell bisher nicht zu verfolgen. Mit Computersimulationen ist ein Chemikerteam um Wilfred van Gunsteren der Proteinfaltung nun dicht auf der Spur.

Die Zahl der möglichen Konformationen, die ein Protein prinzipiell annehmen kann, steigt exponentiell mit der Kettenlänge. Schnell werden astronomische Größenordnungen erreicht. Unmöglich, alle am Rechner durchzutesten! Dank der enormen Rechenleistung heutiger Großcomputer kann inzwischen zumindest die Faltung sehr kurzer Peptidketten simuliert werden. Abstoßung und Anziehung zwischen den einzelnen Atomen des Proteins bestimmen das Gleichgewicht zwischen gefaltetem (nativem) und entfaltetem (denaturiertem) Zustand. Die Gesamtheit der räumlichen Charakteristika all dieser Kräfte wird als Kraftfeld bezeichnet. Um den Verlauf eines Faltungsprozesses zu simulieren, muss nicht nur der eine gefaltete Endzustand, sondern insbesondere auch der entfaltete Ausgangszustand des Proteins in Form eines Kraftfeldes genau charakterisiert werden, erkannte van Gunsteren. Ein hoffnungsloses Unterfangen, wie es bisher schien - die Zahl der theoretisch möglichen entfalteten Zustände ist einfach zu riesig.

Eben diese Annahme entpuppte sich nun als Irrtum. In Wahrheit ist die Zahl sogar vergleichsweise gering, wie sich anhand von Simulationsrechnungen für mehrere kleine Peptide herausstellte. "Diese Erkenntnis rückt die Simulation des Faltungsprozesses eines Proteins auf atomarer Ebene in greifbare Nähe," zeigt sich van Gunsteren optimistisch.

Aber wie kommt man zum benötigten Kraftfeld für das entfaltete Protein, wenn keine experimentellen Daten dazu vorliegen? Van Gunsteren und seine Mitstreiter behalfen sich mit Daten über die Wechselwirkungen innerhalb und zwischen kleinen Molekülen in Lösung. Ausgehend von dem so ausgetüftelten Kraftfeld war das Team in der Lage, die Faltung einer Reihe von Peptiden zu simulieren.

Sollte die Simulation des Faltungsprozesses auf diese Weise auch für größere Proteine funktionieren, rückt eine der grundlegenden Herausforderungen der Molekularbiologie in greifbare Nähe: die Vorhersage der räumlichen Strukturen unbekannter Proteine.


Kontakt:

Prof. Dr.W. F. van Gunsteren
Laboratorium für
Physikalische Chemie
Eidgenössische Technische Hochschule Zürich
ETH-Zentrum
CH-8092 Zürich
Schweiz

Fax: (+41) 1-632-1039

E-Mail: wfvgn@igc.phys.chem.ethz.ch


Quelle: Angewandte Chemie, Ausgabe 02/2001 (113), 363 - 367
Hrsg.: Gesellschaft Deutscher Chemiker (GDCh)

Dr. Kurt Begitt | idw

Weitere Berichte zu: Faltung Faltungsprozess Kraftfeld Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics