Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biochip für die Massenanalyse von Erbmolekülen

26.03.2003



Siemens hat in Zusammenarbeit mit vier Partnern einen Biochip für die rasche und gleichzeitige Analyse von 128 Proben des Erbmoleküls DNS entwickelt.

... mehr zu:
»Biochip »DNS »Probe »Sibanat »Silizium-Chip

Im Rahmen des vom Bundesforschungsministerium geförderten Projekts Sibanat (Silizium-Chipsystem für die biochemische Analysentechnik) gelang die Herstellung eines miniaturisierten Auswertesystems, das mit elektrischen Signalen arbeitet. Diese Technik, bei der Siemens-Forscher in Erlangen mit dem Fraunhofer-Institut für Siliziumtechnologie in Itzehoe, dem Erlanger Biotech-Unternehmen november, dem Hamburger Laborgerätehersteller Eppendorf und dem Chip-Hersteller Infineon Technologies kooperierten, ist wesentlich schneller, robuster, einfacher und billiger als bisherige optische Verfahren.

Die Technik erschließt völlig neue Diagnosemöglichkeiten in der Medizin und Umwelttechnik. Heute müssen DNS-Tests in Großlabors mit aufwändigen Analysegeräten gemacht werden, was teuer ist und mehrere Tage dauern kann. Künftig könnten diese Tests als Reihenuntersuchung in einem tragbaren Minilabor innerhalb weniger Stunden stattfinden, wobei das eigentliche Messsystem nur halb so groß wie ein Fingernagel ist und auf einer Platte von der Größe einer Chipkarte sitzt. Die Partner haben einen Demonstrator gebaut. In ersten Versuchen haben sie Viren-DNS unterschieden. Als Modell wählten sie dabei menschliche Papillomaviren (HPV), die für die Entstehung von Gebär-mutterhalskrebs verantwortlich gemacht werden. Das System ist aber variabel, je nach Ausgestaltung kann es beliebige DNS-Proben untersuchen.


Von Infineon stammt der in CMOS-Technik gefertigte Silizium-Chip mit Goldelektroden, auf dem jedes Pixel einzeln ausgelesen werden kann. november lieferte die biochemische Technik, Eppendorf die Technik zur Vorbereitung der Proben. Siemens entwickelte ein Auslesegerät sowie die Ver-fahrenstechnik, und ist für die Zusammenführung der Teile des Systems verantwortlich. Die "Pixel" auf dem Silizium-Chip bestehen aus 128 Sensoren mit je etwa einem Zehntel Millimeter Durchmesser. Auf jedem dieser Sensoren sind Halbstränge einer bekannten DNS befestigt. Die zu Halbsträngen aufbereitete Probe aus unbekannter DNS wird über den Chip gespült, wobei sich passende DNS-Fragmente mit jenen auf dem Chip zu Doppelsträngen verbinden. Mit Hilfe eines Enzyms werden genau die Pixel elektrisch aktiv, an denen sich ein Doppelstrang gebildet hat. Dabei fließen Ströme in der Größenordnung von Milliardstel Ampère. Da genau festgelegt ist, an welcher Position welche Test-DNS sitzt, kann genau ermittelt werden, welche DNS in der Probe war. Das Projekt Sibanat endet zum 31. März 2003. Das Forscherteam erhielt für die Innovation den diesjährigen Jack Raper Award, der auf der bedeutendsten Konferenz für Mikroelektronik in San Francisco verliehen wurde.

Dr. Norbert Aschenbrenner | Siemens AG
Weitere Informationen:
http://www.siemens.de/newsdesk

Weitere Berichte zu: Biochip DNS Probe Sibanat Silizium-Chip

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie