Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Tor zum Kraftwerk des Lebens

19.03.2003


Mitochondrien, die "Kraftwerke" der Zellen, enthalten mehrere hundert verschiedene Proteine, von denen sie nur wenige selbst produzieren können. Alle anderen Proteine müssen auf komplizierten Wegen aus dem Zellinneren importiert werden. Auf welchem Weg dies geschieht, haben jetzt Wissenschaftler des Max-Planck-Instituts in Frankfurt/Main gemeinsam mit zwei Arbeitsgruppen der Universitäten Freiburg und Osnabrück bis ins molekulare Detail hinein aufgeklärt. Sie berichten in der internationalen Fachzeitschrift Science (Science, 14. März 2003), wie lebensnotwendige Boten-Proteine über zweiporige Kanäle in der inneren Hülle des "Zell-Kraftwerks" landen. Diese molekularen Einblicke sind sehr wichtig, da schwerwiegende neurodegenerative Erkrankungen wie das Mohr-Tranebjaerg-Syndrom auftreten können, wenn die für den Import der Botenmoleküle verantwortlichen Proteine defekt sind.


Abb. 1: Der Aufbau eines Mitochondriums.

Grafik: Max-Planck-Institut für Biophysik


Abb. 2: Die zwei Haupt-Importwege für Vorstufenproteine in das Mitochondrium. Eingefügt sind zwei elektronenmikroskopische Mittelungsbilder (rechts). Oben: Multiproteinschleuse in der Außenmembran (TOM Komplex), unten: Multiproteinschleuse in der Innenmembran (TIM22 Komplex). (R= Rezeptor, GIP= Generelle Import Pore)

Grafik: Max-Planck-Institut für Biophysik



Eiweißmoleküle (Proteine) sind nahezu an allen Lebensprozessen beteiligt. Zu Tausenden kommen diese verschiedenen lebenswichtigen Moleküle in jeder Zelle eines Organismus vor. Die Energie für die Arbeit in den Zellen liefern eigene "Kraftwerke", die Mitochondrien. Jedes dieser "Kraftwerke" ist von einer inneren und einer äußeren Membranhülle umgeben. Sie arbeiten in allen Lebewesen gleich und steuern die Energieproduktion. Treten Funktionsstörungen in diesen "Kraftwerken" auf, kann das zu Zellschädigungen bis hin zum Zelltod führen. Ausgelöst werden sie beispielsweise durch eine beeinträchtigte Energieproduktion, einen unausgeglichenen Kalziumhaushalt, oxidativen Stress oder das verhinderte Einschleusen lebenswichtiger Proteine durch die mitochondriale Doppelmembran. In letzterem Fall kann das beim Menschen ein Syndrom auslösen, das bis zur Taubheit führt (Mohr-Tranebjaerg-Syndrom). Deshalb ist es wichtig, die komplexen Mechanismen zum Einschleusen der Proteine in das "Kraftwerk des Lebens" zu erforschen.



Diverse Proteine werden quasi als "Kraftwerk-Bausteine" über Multiprotein-Schleusen (Translokasen) in das Mitochondrium transportiert. Die erste Importmaschine ist der so genannte TOM-Komplex, der den Durchgang durch die äußere Membran über eine gemeinsame Pore (GIP, Generelle Import Pore) regelt. Für das Eindringen in die Innenmembran trennen sich dann die Wege, je nachdem, um was für ein Protein es sich handelt. Man unterscheidet zwei große Gruppen von Vorstufenproteinen: spaltbare Proteine mit einem einzigen Signal, ähnlich einer Kennzahl, an einem Ende und nicht spaltbare Boten-Proteine mit mehreren internen Signalen. Die ersten werden durch ihre "Spezial-Pforte", den sogenannten TIM23-Komplex, eingeschleust. Hingegen erreichen die "Botenträger" die Innenmembran der "Powerstation" durch den TIM22-Komplex.

Bisher war nicht bekannt, wie dieser TIM22-Komplex funktioniert. Das konnten die Max-Planck-Forscher jetzt gemeinsam mit ihren Partnern mittels biochemischer, elektronenmikroskopischer und elektrophysiologischer Untersuchungen an einzelnen Komplex-Partikeln ermitteln. Um zu erfahren, was sich genau in dieser "Schleuse" abspielt, mussten die Wissenschaftler zunächst den Protein-Komplex aus dem Modellorganismus der Bäckerhefe isolieren. Das war nicht leicht, weil dieser essentielle Komplex in der Innenmembran des "Kraftwerkes" nicht gerade häufig vorkommt. Wissenschaftlern am Institut für Biochemie und Molekularbiologie in Freiburg gelang es jedoch, den TIM22-Komplex in ausreichenden Mengen so sauber aus der Innenmembran herauszulösen, dass die einzelnen Partikel unter dem Elektronenmikroskop sichtbar gemacht werden konnten. Dadurch wurde es erstmalig möglich, diese regulierte Pore der Innenmembran genauer zu beschreiben. Doch die sehr kleinen, nur elf Nanometer langen Einzelpartikel erforderten eine optimierte Methode für ihre Klassifizierung. Diese Charakterisierung gelang dann am Max-Planck-Institut für Biophysik in Frankfurt/M.: Dabei stellte sich heraus, dass die TIM22-"Schleuse" aus zwei physikalischen Öffnungen besteht. Elektrophysiologische Messungen in der Biophysik der Universität Osnabrück ergaben dann, dass es sich dabei um zwei gekoppelte Transportkanäle handelt.

Der Durchmesser der Kanäle ist nachweislich kleiner als die General Import Pore. Das ist notwendig, weil der Transport über die Innenmembran sehr streng reguliert sein muss, um kein Leck zu riskieren. Denn während des Imports muss das Konzentrationsgefälle (Membranpotential) über der Innenmembran aufrechterhalten bleiben, um weiterhin eine reibungslose Energiegewinnung in der "Powerstation" zu gewährleisten. In einem ersten Schritt legt das Boten-Protein dann lose - mit Hilfe von kleinen Tim-Proteinen - am TIM22-Komplex an. Im zweiten Schritt dockt es richtig an, wofür es ein bestimmtes Membranpotential benötigt. Doch erst in der dritten Phase wird der Kanal durch maximale Spannung und durch die Gegenwart des zu transportierenden Boten-Proteins voll aktiviert und reguliert. Ist das Boten-Protein dann in der Innenmembran erfolgreich eingebaut, kann es seine Funktion ausüben. Diese besteht unter anderem darin, wie ein "Shuttle" das ATP als Energiespeicher aus dem Innern des "Kraftwerkes" zu seinen "Verbrauchern" nach außen in die Zelle zu transportieren und leere Energiespeicher-Moleküle wieder ins "Kraftwerk" zurück zu schleusen, um sie dort wieder aufzufüllen.

Dass der Protein-Import in die Mitochondrien einwandfrei funktioniert, ist nicht nur für die einzelne Zelle lebensnotwendig, meint Max-Planck-Forscherin Kirstin Model. Inzwischen gibt es viele Erkrankungen, bei denen die Mitochondrien als Ursache mit in Betracht gezogen werden.


Weitere Informationen erhalten Sie von:

Dr. Kirstin Model
Max-Planck-Institut für Biophysik
Marie-Curie-Str. 15
60439 Frankfurt am Main
Bis 1. April 2003:
Tel.: 0 69 / 6 78 08 - 30 05
Fax: 0 69 / 6 78 08 - 30 02
Ab 1. April 2003:
Tel.: 0 69 / 63 03 - 30 05
Fax: 0 69 / 63 03 - 30 02
E-Mail: Kirstin.Model@mpibp-frankfurt.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biophys.mpg.de/model
http://www.biophys.mpg.de/

Weitere Berichte zu: Boten-Protein Innenmembran Mitochondrium Protein TIM22-Komplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften