Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam klärt Proteineinbau in innere Mitochondrienmembran

14.03.2003


Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Ein Team aus Bochumer (Prof. Dr. Helmuth E. Meyer, Medizinisches Proteomcenter der RUB), Osnabrücker, Frankfurter und Freiburger Forschern hat aufgeklärt, wie Proteinketten in die innere Membran von Mitochondrien eingebaut werden.


Der Prozess läuft über ein doppelporiges Enzym und wird ausschließlich durch elektrische Energie aus dem Membranpotential angetrieben. Darüber berichtet das Wissenschaftsmagazin Science in seiner Ausgabe vom 14. März 2003.

Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Auf dem Weg durch die Membranen

Mitochondrien sind die Kraftwerke der Zelle. Hier wird die einheitliche Energiewährung für alle Zellfunktionen, das ATP, gebildet. Dafür ist ein spezieller Aufbau dieser Zellorganellen notwendig. So besitzen Mitochondrien z. B. zwei Membranen (äußere und innere) und einen dazwischenliegenden Intermembranraum. Mitochondriale Proteine werden größtenteils von Genen des Zellkerns kodiert und außerhalb der Mitochondrien gebildet. Sie müssen also über die äußere Membran, den Intermembranraum sowie in oder über die innere Mitochondrienmembran transportiert werden. Der Transport mitochondrialer Proteine wird durch bestimmte Enzyme, sog. Translokasen, vermittelt, welche die Proteine anhand von Signal-Sequenzen erkennen, binden und schließlich über oder in die innere Membran transportieren.

TIM22 hilft

Eine dieser Translokasen ist der sog. Protein-Insertions-Komplex TIM22, der aus insgesamt sechs verschiedenen Proteinen besteht, von denen eine Proteinuntereinheit eine Pore bildet, die vom elektrochemischen Potential über der inneren Membran gesteuert wird. Der TIM22 Komplex transportiert solche Proteine, die die innere Membran mehrfach durchspannen. Seine Beteiligung am Einbau von Proteinen in die innere Mitochondrienmembran ist seit längerem bekannt, doch gab es bislang noch keinen Hinweis darauf, wie dieser Prozess abläuft und welchen Einfluss das elektrische Membranpotential auf den Insertionsablauf ausübt.

Reinigen, analysieren und verstehen

Dr. Peter Rehling aus der Arbeitsgruppe von Prof. Nikolaus Pfanner (Institut für Biochemie und Molekukarbiologie der Universität Freiburg) ist es nun gemeinsam mit der Gruppe von Prof. Dr. Richard Wagner (Universität Osnabrück), Prof. Dr. Werner Kühlbrandt und Dr. Kristin Model (Max Planck Institut für Biophysik, Frankfurt) und Prof. Dr. Helmuth E. Meyer und Dr. Albert Sickmann (Medizinisches Proteom-Center der RUB) gelungen, den gesamten TIM22 Komplex aufzureinigen, zu analysieren und entscheidende Fortschritte im Verständnis zum Ablauf des Proteineinbaus in die innere Mitochondrienmembran zu erreichen.

Einbau in drei Schritten

Die Forscher konnten den gereinigten TIM22 Komplex in eine künstliche Membran einbauen. Elektrophysiologische Untersuchungen zeigten, dass sich der TIM 22 Komplex wie zwei miteinander gekoppelte Membrankanäle verhält. Elektronenmikroskopische Untersuchungen bewiesen, dass die Struktur des Komplexes aus einer Doppel-Pore besteht. Darüber hinaus konnten die Wissenschaftler durch Veränderung des Membranpotentials zeigen, dass der Einbau von Proteinen in die innere Mitochondrienmembran durch den TIM22 Komplex in drei Schritten erfolgt: Zunächst bindet die Translokase das einzubauende Protein; dieser Vorgang läuft unabhängig vom Membranpotential ab. Daraufhin erfolgt eine Membranpotential-abhängige Einfädlung des einzubauenden Proteins in den TIM22 Komplex. Ein hohes Membranpotential und der Kontakt mit Signalen im transportierten Protein aktivieren den Kanal und vermitteln im dritten Schritt den Einbau des transportierten Proteins in die Membran. Die einzige externe Energiequelle für diesen Prozess ist dabei das Membranpotential.

Tiefer Einblick in die Vorgänge in Zellen

Die Ergebnisse dieser Arbeit geben einen tiefen Einblick in den Mechanismus des Proteinimports von Membranproteinen in die innere Mitochondrienmembran. Die Arbeit wurde gefördert von der DFG, dem Fonds der Chemischen Industrie und dem BMBF.

Dr. Josef König | idw
Weitere Informationen:
http://www.sciencemag.org/cgi/content/full/299/5613/1747

Weitere Berichte zu: Komplex Membran Membranpotential Mitochondrienmembran Protein TIM22

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen