Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam klärt Proteineinbau in innere Mitochondrienmembran

14.03.2003


Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Ein Team aus Bochumer (Prof. Dr. Helmuth E. Meyer, Medizinisches Proteomcenter der RUB), Osnabrücker, Frankfurter und Freiburger Forschern hat aufgeklärt, wie Proteinketten in die innere Membran von Mitochondrien eingebaut werden.


Der Prozess läuft über ein doppelporiges Enzym und wird ausschließlich durch elektrische Energie aus dem Membranpotential angetrieben. Darüber berichtet das Wissenschaftsmagazin Science in seiner Ausgabe vom 14. März 2003.

Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Auf dem Weg durch die Membranen

Mitochondrien sind die Kraftwerke der Zelle. Hier wird die einheitliche Energiewährung für alle Zellfunktionen, das ATP, gebildet. Dafür ist ein spezieller Aufbau dieser Zellorganellen notwendig. So besitzen Mitochondrien z. B. zwei Membranen (äußere und innere) und einen dazwischenliegenden Intermembranraum. Mitochondriale Proteine werden größtenteils von Genen des Zellkerns kodiert und außerhalb der Mitochondrien gebildet. Sie müssen also über die äußere Membran, den Intermembranraum sowie in oder über die innere Mitochondrienmembran transportiert werden. Der Transport mitochondrialer Proteine wird durch bestimmte Enzyme, sog. Translokasen, vermittelt, welche die Proteine anhand von Signal-Sequenzen erkennen, binden und schließlich über oder in die innere Membran transportieren.

TIM22 hilft

Eine dieser Translokasen ist der sog. Protein-Insertions-Komplex TIM22, der aus insgesamt sechs verschiedenen Proteinen besteht, von denen eine Proteinuntereinheit eine Pore bildet, die vom elektrochemischen Potential über der inneren Membran gesteuert wird. Der TIM22 Komplex transportiert solche Proteine, die die innere Membran mehrfach durchspannen. Seine Beteiligung am Einbau von Proteinen in die innere Mitochondrienmembran ist seit längerem bekannt, doch gab es bislang noch keinen Hinweis darauf, wie dieser Prozess abläuft und welchen Einfluss das elektrische Membranpotential auf den Insertionsablauf ausübt.

Reinigen, analysieren und verstehen

Dr. Peter Rehling aus der Arbeitsgruppe von Prof. Nikolaus Pfanner (Institut für Biochemie und Molekukarbiologie der Universität Freiburg) ist es nun gemeinsam mit der Gruppe von Prof. Dr. Richard Wagner (Universität Osnabrück), Prof. Dr. Werner Kühlbrandt und Dr. Kristin Model (Max Planck Institut für Biophysik, Frankfurt) und Prof. Dr. Helmuth E. Meyer und Dr. Albert Sickmann (Medizinisches Proteom-Center der RUB) gelungen, den gesamten TIM22 Komplex aufzureinigen, zu analysieren und entscheidende Fortschritte im Verständnis zum Ablauf des Proteineinbaus in die innere Mitochondrienmembran zu erreichen.

Einbau in drei Schritten

Die Forscher konnten den gereinigten TIM22 Komplex in eine künstliche Membran einbauen. Elektrophysiologische Untersuchungen zeigten, dass sich der TIM 22 Komplex wie zwei miteinander gekoppelte Membrankanäle verhält. Elektronenmikroskopische Untersuchungen bewiesen, dass die Struktur des Komplexes aus einer Doppel-Pore besteht. Darüber hinaus konnten die Wissenschaftler durch Veränderung des Membranpotentials zeigen, dass der Einbau von Proteinen in die innere Mitochondrienmembran durch den TIM22 Komplex in drei Schritten erfolgt: Zunächst bindet die Translokase das einzubauende Protein; dieser Vorgang läuft unabhängig vom Membranpotential ab. Daraufhin erfolgt eine Membranpotential-abhängige Einfädlung des einzubauenden Proteins in den TIM22 Komplex. Ein hohes Membranpotential und der Kontakt mit Signalen im transportierten Protein aktivieren den Kanal und vermitteln im dritten Schritt den Einbau des transportierten Proteins in die Membran. Die einzige externe Energiequelle für diesen Prozess ist dabei das Membranpotential.

Tiefer Einblick in die Vorgänge in Zellen

Die Ergebnisse dieser Arbeit geben einen tiefen Einblick in den Mechanismus des Proteinimports von Membranproteinen in die innere Mitochondrienmembran. Die Arbeit wurde gefördert von der DFG, dem Fonds der Chemischen Industrie und dem BMBF.

Dr. Josef König | idw
Weitere Informationen:
http://www.sciencemag.org/cgi/content/full/299/5613/1747

Weitere Berichte zu: Komplex Membran Membranpotential Mitochondrienmembran Protein TIM22

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise