Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam klärt Proteineinbau in innere Mitochondrienmembran

14.03.2003


Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Ein Team aus Bochumer (Prof. Dr. Helmuth E. Meyer, Medizinisches Proteomcenter der RUB), Osnabrücker, Frankfurter und Freiburger Forschern hat aufgeklärt, wie Proteinketten in die innere Membran von Mitochondrien eingebaut werden.


Der Prozess läuft über ein doppelporiges Enzym und wird ausschließlich durch elektrische Energie aus dem Membranpotential angetrieben. Darüber berichtet das Wissenschaftsmagazin Science in seiner Ausgabe vom 14. März 2003.

Der TIM22 Komplex baut über eine Doppelpore Proteine in die innere Mitochondrienmembran ein. Antrieb dieses Vorgangs ist das elektrische Membranpotential.


Auf dem Weg durch die Membranen

Mitochondrien sind die Kraftwerke der Zelle. Hier wird die einheitliche Energiewährung für alle Zellfunktionen, das ATP, gebildet. Dafür ist ein spezieller Aufbau dieser Zellorganellen notwendig. So besitzen Mitochondrien z. B. zwei Membranen (äußere und innere) und einen dazwischenliegenden Intermembranraum. Mitochondriale Proteine werden größtenteils von Genen des Zellkerns kodiert und außerhalb der Mitochondrien gebildet. Sie müssen also über die äußere Membran, den Intermembranraum sowie in oder über die innere Mitochondrienmembran transportiert werden. Der Transport mitochondrialer Proteine wird durch bestimmte Enzyme, sog. Translokasen, vermittelt, welche die Proteine anhand von Signal-Sequenzen erkennen, binden und schließlich über oder in die innere Membran transportieren.

TIM22 hilft

Eine dieser Translokasen ist der sog. Protein-Insertions-Komplex TIM22, der aus insgesamt sechs verschiedenen Proteinen besteht, von denen eine Proteinuntereinheit eine Pore bildet, die vom elektrochemischen Potential über der inneren Membran gesteuert wird. Der TIM22 Komplex transportiert solche Proteine, die die innere Membran mehrfach durchspannen. Seine Beteiligung am Einbau von Proteinen in die innere Mitochondrienmembran ist seit längerem bekannt, doch gab es bislang noch keinen Hinweis darauf, wie dieser Prozess abläuft und welchen Einfluss das elektrische Membranpotential auf den Insertionsablauf ausübt.

Reinigen, analysieren und verstehen

Dr. Peter Rehling aus der Arbeitsgruppe von Prof. Nikolaus Pfanner (Institut für Biochemie und Molekukarbiologie der Universität Freiburg) ist es nun gemeinsam mit der Gruppe von Prof. Dr. Richard Wagner (Universität Osnabrück), Prof. Dr. Werner Kühlbrandt und Dr. Kristin Model (Max Planck Institut für Biophysik, Frankfurt) und Prof. Dr. Helmuth E. Meyer und Dr. Albert Sickmann (Medizinisches Proteom-Center der RUB) gelungen, den gesamten TIM22 Komplex aufzureinigen, zu analysieren und entscheidende Fortschritte im Verständnis zum Ablauf des Proteineinbaus in die innere Mitochondrienmembran zu erreichen.

Einbau in drei Schritten

Die Forscher konnten den gereinigten TIM22 Komplex in eine künstliche Membran einbauen. Elektrophysiologische Untersuchungen zeigten, dass sich der TIM 22 Komplex wie zwei miteinander gekoppelte Membrankanäle verhält. Elektronenmikroskopische Untersuchungen bewiesen, dass die Struktur des Komplexes aus einer Doppel-Pore besteht. Darüber hinaus konnten die Wissenschaftler durch Veränderung des Membranpotentials zeigen, dass der Einbau von Proteinen in die innere Mitochondrienmembran durch den TIM22 Komplex in drei Schritten erfolgt: Zunächst bindet die Translokase das einzubauende Protein; dieser Vorgang läuft unabhängig vom Membranpotential ab. Daraufhin erfolgt eine Membranpotential-abhängige Einfädlung des einzubauenden Proteins in den TIM22 Komplex. Ein hohes Membranpotential und der Kontakt mit Signalen im transportierten Protein aktivieren den Kanal und vermitteln im dritten Schritt den Einbau des transportierten Proteins in die Membran. Die einzige externe Energiequelle für diesen Prozess ist dabei das Membranpotential.

Tiefer Einblick in die Vorgänge in Zellen

Die Ergebnisse dieser Arbeit geben einen tiefen Einblick in den Mechanismus des Proteinimports von Membranproteinen in die innere Mitochondrienmembran. Die Arbeit wurde gefördert von der DFG, dem Fonds der Chemischen Industrie und dem BMBF.

Dr. Josef König | idw
Weitere Informationen:
http://www.sciencemag.org/cgi/content/full/299/5613/1747

Weitere Berichte zu: Komplex Membran Membranpotential Mitochondrienmembran Protein TIM22

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie