Mikro in 3-D

Einfache Synthese dreidimensionaler Mikrostrukturen durch zeitlich versetzte Elektroabscheidung

Immer kleiner, immer feiner – die Mikrosystemtechnik ist auf dem Vormarsch. Komplette Systeme, etwa für die chemische Analytik oder medizinische Diagnostik, lassen sich durchaus auf Daumennagelgröße herunterschrumpfen. Allerdings ist die Herstellung der benötigten dreidimensionalen Mikrostrukturen mit den herkömmlichen Verfahren sehr aufwendig.

Am MIT haben amerikanische Forscher um Robert Langer, David LaVan und Paul George nun eine wesentlich vereinfachte Herstellmethode entwickelt, die auf einer zeitlich versetzten Elektroabscheidung des elektrisch leitfähigen Kunststoffs Polypyrrol oder alternativ des Metalls Nickel beruht.

Im ersten Schritt wird aber erst einmal mit konventioneller Photolithographie eine zweidimensionale Struktur als Ausgangsbasis erzeugt. Auf einen Siliziumnitrid-beschichteten Silizium-Wafer wird dazu ein Photoresist – ein lichtempfindlicher Kunststoff – aufgetragen und durch eine Maske, die das gewünschte Muster trägt, bestrahlt. An den belichteten Stellen verändert sich der Photoresist und kann dann selektiv herausgelöst werden. Bei der anschließenden Beschichtung mit Gold werden nur die freigelegten Bereiche bedeckt. Entfernt man den restlichen Photoresist, bleibt ein zweidimensionales Goldmuster in der gewünschten Form zurück. Der entscheidende neue Dreh dabei sind kleine Lücken, durch die die Forscher ganz gezielt einzelne Bereiche des Goldmusters von einander absetzen. Denn wenn während der folgenden Elektroabscheidung elektrische Spannung an einen Punkt des Goldmusters angelegt wird, steht nur ein einzelner, durch die Lücken begrenzter Bereich unter Strom. Hier beginnt also bald die Abscheidung von Polypyrrol – oder von Nickel. Während der Abscheidung wächst das Material sowohl in die Höhe als auch seitlich über das Goldmuster hinaus. Auf diese Weise werden die Lücken nach einer Weile überbrückt. Ist die Verbindung zum benachbarten Bereich des Musters hergestellt, steht auch dieser unter Strom. Auch hier beginnt nun die Elektroabscheidung – bis zur nächsten Lücke, und so fort. Da das Material in den einzelnen durch die Lücken separierten Bereichen jeweils mit zeitlicher Verzögerung aufwächst, entstehen Strukturen mit abgestufter Höhe. Die Höhenunterschiede können über die Lückengröße gesteuert werden. Die entstandene Struktur kann später als Negativ oder „Gussform“ für eine Verfielfältigung dienen.

Dem MIT-Team gelang so unter anderem der Aufbau einer Gussform für ein verzweigtes Mikrogefäßsystems. Auf diese Weise ließen sich möglicherweise Gerüste für die Herstellung von Blutgefäßen innerhalb künstlicher Organe entwickeln.

Kontakt:

Prof. R. Langer
Department of Chemical Engineering
Massachusetts Institute
of Technology
Cambridge
MA 02139
USA
Telefax: (+1) 617-258-6843
E-mail: rlanger@mit.edu
und

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Telefon: 06201/606 321
Telefax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Media Contact

Dr. Kurt Begitt idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer