Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikro in 3-D

11.03.2003


Einfache Synthese dreidimensionaler Mikrostrukturen durch zeitlich versetzte Elektroabscheidung


Immer kleiner, immer feiner - die Mikrosystemtechnik ist auf dem Vormarsch. Komplette Systeme, etwa für die chemische Analytik oder medizinische Diagnostik, lassen sich durchaus auf Daumennagelgröße herunterschrumpfen. Allerdings ist die Herstellung der benötigten dreidimensionalen Mikrostrukturen mit den herkömmlichen Verfahren sehr aufwendig.

Am MIT haben amerikanische Forscher um Robert Langer, David LaVan und Paul George nun eine wesentlich vereinfachte Herstellmethode entwickelt, die auf einer zeitlich versetzten Elektroabscheidung des elektrisch leitfähigen Kunststoffs Polypyrrol oder alternativ des Metalls Nickel beruht.


Im ersten Schritt wird aber erst einmal mit konventioneller Photolithographie eine zweidimensionale Struktur als Ausgangsbasis erzeugt. Auf einen Siliziumnitrid-beschichteten Silizium-Wafer wird dazu ein Photoresist - ein lichtempfindlicher Kunststoff - aufgetragen und durch eine Maske, die das gewünschte Muster trägt, bestrahlt. An den belichteten Stellen verändert sich der Photoresist und kann dann selektiv herausgelöst werden. Bei der anschließenden Beschichtung mit Gold werden nur die freigelegten Bereiche bedeckt. Entfernt man den restlichen Photoresist, bleibt ein zweidimensionales Goldmuster in der gewünschten Form zurück. Der entscheidende neue Dreh dabei sind kleine Lücken, durch die die Forscher ganz gezielt einzelne Bereiche des Goldmusters von einander absetzen. Denn wenn während der folgenden Elektroabscheidung elektrische Spannung an einen Punkt des Goldmusters angelegt wird, steht nur ein einzelner, durch die Lücken begrenzter Bereich unter Strom. Hier beginnt also bald die Abscheidung von Polypyrrol - oder von Nickel. Während der Abscheidung wächst das Material sowohl in die Höhe als auch seitlich über das Goldmuster hinaus. Auf diese Weise werden die Lücken nach einer Weile überbrückt. Ist die Verbindung zum benachbarten Bereich des Musters hergestellt, steht auch dieser unter Strom. Auch hier beginnt nun die Elektroabscheidung - bis zur nächsten Lücke, und so fort. Da das Material in den einzelnen durch die Lücken separierten Bereichen jeweils mit zeitlicher Verzögerung aufwächst, entstehen Strukturen mit abgestufter Höhe. Die Höhenunterschiede können über die Lückengröße gesteuert werden. Die entstandene Struktur kann später als Negativ oder "Gussform" für eine Verfielfältigung dienen.

Dem MIT-Team gelang so unter anderem der Aufbau einer Gussform für ein verzweigtes Mikrogefäßsystems. Auf diese Weise ließen sich möglicherweise Gerüste für die Herstellung von Blutgefäßen innerhalb künstlicher Organe entwickeln.

Kontakt:

Prof. R. Langer
Department of Chemical Engineering
Massachusetts Institute
of Technology
Cambridge
MA 02139
USA
Telefax: (+1) 617-258-6843
E-mail: rlanger@mit.edu
und

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Telefon: 06201/606 321
Telefax: 06201/606 331
E-Mail: angewandte@wiley-vch.de




Dr. Kurt Begitt | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Elektroabscheidung Goldmuster Mikro Photoresist

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie