Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungs-Spurenanalytik

15.11.2000


Exzeptionelle Senkung der Nachweisgrenzen durch aufschlussfreies Feststoffverfahren

»A.M.S.El.« akronymisiert sich der Arbeitskreis für Mikro- und Spurenanalyse der Elemente und Elementspezies der Fachgruppe Analytische Chemie der Gesellschaft Deutscher Chemiker (GDCh). Die Spurenanalytiker spüren winzigste Mengen von Fremdelementen in einer Grundsubstanz, der Matrix auf. Sie tun es keineswegs nur aus theoretischem Interesse, sondern mit praktischem Ziel, zum Beispiel dann, wenn aus besagter Matrix - etwa Silizium - hochsensible Bauelemente hergestellt werden. Hier können bereits winzigste Verunreinigungen die Endprodukte unbrauchbar machen. Innovative Entwicklungen auf dem Gebiet der Spurenanalyse würdigt A.M.S.El. mit einem Forschungspreis - letzthin an den (Ex-)Ulmer Spurenanalytiker Dr. Uwe Schäffer verliehen.

»Entwicklung und Anwendung von direkten spektrometrischen Methoden zur Analyse von High-Tech-Materialien auf Kohlenstoffbasis« heißt der Titel der prämiierten Arbeit. Es ist Schäffers Dissertation, angefertigt in der Sektion Analytik und Höchstreinigung der Universität Ulm, seinerzeit noch geleitet von Prof. Dr. Viliam Krivan (inzwischen emeritiert). Das Thema ist die Entwicklung neuer spurenanalytischer Analysemethoden auf der Grundlage der elektrothermischen Atomabsorptionsspektroskopie (ETAAS) und der Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-AES).

Blindwert-Verwehungen

ETAAS und ICP-AES sind gegenwärtig, zusammen mit der ICP-MS, der Massenspektrometrie mit induktiv gekoppeltem Plasma, die beiden wichtigsten Routinemethoden der Spurenanalytik. Allerdings war die Analyse von Festproben bisher in der Regel problematisch. Bei deren Aufschluss, der notwendig vorangehen muss, gelangen gegebenenfalls um einige Größenordnungen mehr Fremdelementmengen in die Probe, als sich ursprünglich darin befinden. In den »Verwehungen« dieser Blindwerteinträge sind die eigentlichen Verunreinigungen kaum mehr zu bestimmen. Geht es vielleicht auch aufschlussfrei? fragten sich die Ulmer Spurenanalytiker - und in ihrem Gefolge inzwischen zahlreiche Arbeitsgruppen. Die Frage stellt sich um so dringender, je schwerer die Feststoffe aufschließbar und je reiner sie sind. Die auf Kohlenstoff basierenden Werkstoffe (Graphit, Siliziumkarbid, Polyamide) gehören zu den besonders widerständigen. Gerade sie sind aber von besonderem technischem Interesse.

Eines der ersten Ziele Schäffers bestand darin, für die ICP-AES ein auf der elektrothermischen Verdampfung (ETV) der Analyte basierendes System zu entwickeln, das es erlauben sollte, feste Proben automatisch in den Verdampfer ein- und die Analyte möglichst verlustfrei in das Plasma zu überführen. So entwarf er, unterstützt vom Ingenieurbüro Schuierer aus Ismaning bei München, eine kompakte, vollautomatisch gesteuerte Anlage, bestehend aus einem Graphitrohr als Verdampfer und dem automatischen Probengeber. Im Betriebsablauf ist der Auftrag der Proben auf die Plattformen der einzige manuell auszuführende Schritt.

Radiotracer orten und quantifizieren Transportverluste

Über die tatsächlich erreichte Transporteffizienz, die anhand spektrometrischer Messungen nicht zuverlässig ermittelt werden kann, gab es bisher keine ausreichenden Daten. Schäffer nahm deshalb die Radiotracertechnik zu Hilfe: mittels Einsatzes radioaktiv markierter »Kontrollspuren« untersuchte und optimierte er das ETV-System durch präzise Lokalisation und Quantifizierung der Analytverluste in den einzelnen Sektoren des Transportweges. Dabei zeigte sich, dass die größten Verluste an der Schnittstelle zwischen Verdampfer und Probengeber auftreten. Also konstruierte Schäffer ein neues Interface, in dem die durch Adsorption der gasförmigen Analyte auftretenden Verluste durch Zufuhr eines »Bypass-Gases« minimiert werden. Das entlang der kalten Leitungswände fließende Gas verzögert den Kontakt der gasförmigen Analyte mit den Wänden und unterstützt die Bildung von analythaltigen Aerosolen.

Das so verbesserte ETV-System erprobten die Spurenanalytiker anschließend bei der simultanen Bestimmung von 25 Spurenverunreinigungen in Graphit, Siliziumkarbid und Polyamid. Graphit zum Beispiel lässt sich mit Säuren auch bei höheren Temperaturen und Drücken nicht aufschließen, der Aufschluss von Siliziumkarbid dauert 12 Stunden. Mit der ETV-Technik dagegen nimmt die gesamte Analyse nur wenige Minuten in Anspruch. Vor allem aber werden die Nachweisgrenzen gegenüber dem herkömmlichen Aufschlussverfahren um bis zum Faktor 300 (!) gesenkt. Auch bei der elektrothermischen Atomabsorptionsspektroskopie führte der direkte Eintrag der festen Proben in den Atomisator zu vergleichbaren Erfolgen. Für die meisten Elemente sowohl bei Graphit als auch bei Siliziumkarbid sind die Nachweisgrenzen der Feststoff-ETAAS nach Schäffers Untersuchungen die niedrigsten aller derzeit in Frage kommenden Methoden. Sie reichen hinunter in den 0,1-ppb(parts per Billion)-Bereich.

Peter Pietschmann | idw

Weitere Berichte zu: Analyte Graphit ICP-AES Plasma Probe Siliziumkarbid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics