Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Mausefallen

26.02.2003


Sonden für Aminosäuren: Neue Wege der Proteinanalytik?



Reingetappt und zugeschnappt - auch Moleküle können gefangen werden wie die Maus in der Mausefalle. Die molekularen Mausefallen, die ein Forscherteam um J. L. Beauchamp und Brian Stoltz vom California Institute of Technology aufstellt, schnappen zu, wenn die Aminosäure Lysin "hineintappt". Auf diese Weise können die Lysin-Gruppierungen innerhalb eines Proteins markiert werden - vielleicht ein erster Schritt in Richtung einer neuen, schnelleren Proteinanalytik auf der Basis der Massenspektrometrie.



Grundlage für die Mausefalle sind Kronenether, große, ringförmige Moleküle, deren Atome zickzackförmig in zwei Ebenen angeordnet sind und an eine Krone erinnern. Der Hohlraum in der Mitte der Kronen kann kleine Moleküle oder Molekülteile aufnehmen. Diese Komplexe sind stabil genug, um eine Überführung in die Gasphase zu überstehen - Voraussetzung für die massenspektrometrische Analyse. Welche "Gastmoleküle" gebunden werden, hängt vom speziellen Aufbau und von der Größe des Hohlraumes der Krone ab. 18-Krone-6 besteht aus zwölf Kohlenstoff- und sechs Sauerstoffatomen. Unter den gewählten Versuchsbedingungen passt das Endstück der Seitenkette der Aminosäure Lysin genau in diese Krone hinein. Damit die Falle endgültig zuschnappen kann, statteten die Chemiker die Krone mit einer zusätzlichen funktionellen Gruppe aus, die zwei Stickstoffatome enthält. Unter den Bedingungen der Massenspektrometrie wird der Schnappmechanismus aktiviert, indem die beiden Stickstoffatome als Stickstoffmolekül abge-spalten werden. Durch den Bindungsbruch entsteht ein nicht abgesättigtes und damit hochreaktives Kohlenstoffzentrum, das sogleich eine feste (kovalente) Bindung zum gefangenen Lysin eingeht.

"Über die Markierung mit dem Kronenether kann bei kleineren Proteinbruchstücken die Anzahl der Lysine bestimmt werden," erklärt Beauchamp. "Bei größeren Proteinen könnte deren Denaturierung, also das Auseinanderfalten, verfolgt werden: Zunächst werden nur die Lysine auf der Oberfläche markiert, nach und nach werden auch Lysingruppen im Inneren des Proteins zugänglich. So sind Rückschlüsse auf dessen Struktur möglich." Nun wollen die Forscher weitere Mausefallen synthetisieren, die für andere Aminosäuren spezifisch sind. Ziel ist die Entwicklung einer neuen Methode zur Proteinsequenzierung, die direkt in der Gasphase des Massenspektrometers abläuft.

Mit Hilfe synthetischer Verbindungen des Mausefallentyps, die spezifisch an bestimmte Aminosäuresequenzen binden, hofft man auch biochemische Reaktionen in der Gasphase nachahmen zu können, die wie die Spaltung von Amidbindungen sonst nur enzymatisch und in Lösung ablaufen.

Kontakt:
Prof. J. L. Beauchamp
Beckman Institute
California Institute of Technology
Pasadena
CA 91125
USA

Telefax: (+1)626-568-8641
E-mail: jlbchamp@its.caltech.edu

Dr. Kurt Begitt | idw

Weitere Berichte zu: Aminosäure Gasphase Lysin Mausefallen Molekül Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie