Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Logistikprobleme an der Synapse

19.02.2003


Max-Planck-Wissenschaftlern gelingen erste Einblicke in den Transport bestimmter Boten-RNA in die Kontaktregion von Nervenzellen


Abb.: Elektronenmikroskopische Aufnahme eines Netzwerks von Nervenzellen.
Copyright: Jürgen Berger, Max-Planck-Institut für Entwicklungsbiologie, Tübingen



Eine der großen Fragen in der Biologie ist zu verstehen, wie Nervenzellen Information untereinander weiterleiten. Den Verbindungsstellen zwischen verschiedenen Nervenzellen - den so genannten Synapsen - kommt dabei eine ganz zentrale Rolle zu. An ihnen findet die Informationsübertragung statt, und sie entscheiden auch mit darüber, was man sich merkt und was man wieder vergisst. Eine spezifische Ausstattung mit Proteinen ist - soviel wissen die Forscher bereits - für die besondere Funktion der synaptischen Region ausschlaggebend. Die Logistik des Systems, also wie bestimmte Proteine an den Synapsen angereichert werden, ist hingegen noch weitgehend unbekannt. In der jüngsten Ausgabe der Proceedings of the National Academy of Sciences (PNAS 100, 18. Februar 2003) berichten Wissenschaftler vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen über die erfolgreiche biochemische Isolierung von Transportkomplexen (Ribonukleoprotein-Partikel, RNPs), die bestimmte Boten-RNAs in die Dendriten von Nervenzellen befördern und an der Synapse lagern. Die Ergebnisse sind ein wichtiger Schritt für das Verständnis der Kommunikation zwischen Nervenzellen und der im Nervensystem ablaufenden Vorgänge.

... mehr zu:
»Boten-RNA »Dendrit »Nervenzelle »Protein »RNAs »Synapse


Synapsen sind kleine, hochspezialisierte Bereiche in der Plasmamembran von Nervenzellen. Entscheidend für ihre Funktion ist, dass sie sich von anderen Bereichen der Nervenzelloberfläche unterscheiden. Diese Unterschiede entstehen dadurch, dass in der synaptischen Region andere Proteine hergestellt werden als in anderen Regionen der Nervenzelle. Bislang war allerdings noch sehr wenig darüber bekannt, wie es Nervenzellen gelingt, bestimmte Boten-RNAs, die quasi die Bauanleitung für Proteine darstellen, an Synapsen anzureichern bzw. spezifisch dorthin zu transportieren.

In einer lebenden Zelle finden zahlreiche Transportprozesse statt: Während Proteine überwiegend über Vesikel, kleine membranumhüllte Bläschen, oder aber direkt in löslicher Form transportiert werden, scheint dies nicht für RNAs zu gelten. Studien in lebenden Nervenzellen ergaben einen vollkommen anderen Mechanismus: So werden Boten-RNAs offensichtlich von RNA-bindenden Proteinen erkannt, in so genannte Ribonukleoprotein-Partikel (RNPs) verpackt und anschließend mit Hilfe von molekularen Motoren entlang eines Schienenstrangs (in den meisten Fällen den Mikrotubuli, röhrenförmigen Strukturen des Zellskeletts) transportiert. Dieser Prozess ist besonders eindrucksvoll in Nervenzellen, da in ihnen bestimmte mRNAs über zum Teil erhebliche Distanzen in die fingerartig auswachsenden Zellfortsätze, die Dendriten, transportiert werden.

In der Arbeitsgruppe von Michael Kiebler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen ist es nun gelungen, solche Transporteinheiten - die RNPs - biochemisch zu isolieren und näher zu charakterisieren. Als molekulare Markierung verwendeten die Forscher dabei ein Protein aus der Familie der RNA-bindenden Proteine, Staufen1 genannt. Diese Proteine sind in Nervenzellen entweder für den Transport von mRNAs in die Dendriten verantwortlich oder aber für deren Verankerung an ihrem Zielort.

Während Massimo Mallardo und seine Kollegen aus der Arbeitsgruppe von Michael Kiebler in isolierten Transportpartikeln aus Rattenhirn - neben zahlreichen unbekannten Nukleinsäuren - zwei RNAs fanden, die beide in Dendriten vorkommen (BC1 und die α-Untereinheit der Ca2+/Calmodulin-abhängigen Proteinkinase II), wurden sie in den Partikeln, die ausschließlich im Zellkörper lokalisiert sind, auf der Suche nach RNAs nicht fündig. In diesen Transportpartikeln ließ sich allerdings ein molekulares Motorprotein nachweisen, das - so eine Arbeitshypothese der Wissenschaftler - die Partikel in den Dendriten entlang von Mikrotubuli transportieren könnte. Die Ergebnisse zeigen zum ersten Mal, dass die Staufen-Proteine tatsächlich ein wichtiges Bindeglied zwischen dem Transport von mRNAs in die Zellfortsätze und den bisher noch nicht näher charakterisierten Transporteinheiten darstellen. "Bei der Lokalisierung bestimmter RNAs an die Synapse könnten sie eine wichtige Rolle spielen," sagt Michael Kiebler. "Um einem funktionalen Verständnis der Ereignisse an der Synapse näher zu kommen, stellt die Isolierung der Transportpartikel deshalb einen weiteren wichtigen Teilschritt dar."

Weitere Informationen erhalten Sie von:

Dr. Michael Kiebler
Max-Planck-Institut für Entwicklungsbiologie
Spemannstr. 35
72076 Tübingen
Tel: +49-7071 601-329
Fax:+49-7071 601-305
E-Mail: michael.kiebler@tuebingen.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.eb.tuebingen.mpg.de/

Weitere Berichte zu: Boten-RNA Dendrit Nervenzelle Protein RNAs Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics