Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen werden beschattet

19.02.2003


Hochaufgelöste NMR-Bilder von einem Rattenhirn in vivo verdeutlichen die Migration von implantierten Stammzellen. Die gelben Pfeile zeigen die primären Implantationsorte der embryonalen Stammzellen. Bereits nach sechs Tagen migrieren Zellgruppen (rote Pfeile) durch das Corpus Callosum auf das Infarktgebiet zu. Nach weiteren zwei Tagen kann eine Ausbreitung der Zellen, als diffus dunkles Gebiet, am Rand der Schädigung beobachtet werden. Wenige Tage später haben sich die embryonalen Stammzellen im gesamten Striatum (Pfeil) akkumuliert. Zu diesem Zeitpunkt sind die primären Implantationsorte deutlich entvölkert, wie an dem abnehmenden Kontrast zu erkennen ist.


Max-Planck-Forscher beobachten, wie sich embryonale Stammzellen bei Schlaganfall zu neuen Nervenzellen differenzieren / Ansatz für Gewebeersatz-Therapie


Die Migration von embryonalen Stammzellen haben Wissenschaftler des Max-Planck-Instituts für neurologische Forschung sowie der Universität Köln erstmals in vivo beobachtet. Mit Hilfe eines von ihnen selbst weiter entwickelten Kernspintomographen konnten sie beobachten, wie sich implantierte embryonale Stammzellen im Ratten-Hirn gezielt zum Herd eines Schlaganfalls bewegten und dort zu Nervenzellen differenzierten. Die in den renommierten Proceedings of the National Academy of the USA (PNAS, Vol. 99, Issue 25, 16267-16272, 10. Dezember 2002) veröffentlichten Ergebnisse belegen am Tiermodell, dass embryonale Stammzellen neue Chancen für eine Gewebeersatz-Therapie bei Schlaganfall eröffnen könnten.

Die Implantation von embryonalen Stammzellen (ES) ist ein vielversprechender neuer Ansatz, um im Fall von Schlaganfall oder neurodegenerativer Erkrankungen für eine Neubildung von Nervenzellen im Gehirn zu sorgen. Ziel ist eine funktionelle Regeneration der betroffenen Regionen. Doch erst müssen die Stammzellen zu den richtigen Regionen im Gehirn geführt werden, wo sie sich zu Nervenzellen differenzieren und dann in funktionale Verschaltungen des Gehirns eingebaut werden. Bisher war man jedoch nur in der Lage, die Migration und Weiterentwicklung von ins Hirn transplantierten Stammzellen retrospektiv zu verfolgen, indem man das Hirngewebe nach dem Tode mit unterschiedlichen Färbetechniken untersuchte. Doch diese invasiven Methoden liefern nur Momentaufnahmen und keine Informationen über den tatsächlichen Verlauf der Zellmigration und -entwicklung.


Forschern des Max-Planck-Instituts für neurologische Forschung und der Universität Köln ist es nun gelungen, erstmals die Bewegung embryonaler Stammzellen mit Hilfe eines hochauflösenden Kernspintomographen über einen längeren Zeitraum zu beobachten. Die Forscher lösten dazu bei elf Ratten in der rechten Hirnhemisphäre einen Schlaganfall aus und implantierten ihnen zwei Wochen später die speziell präparierten Stammzellen in die gesunde Hirnhälfte. Zur Kontrolle implantierten sie markierte Zellen auch in drei gesunde Ratten.

Für die Beobachtung der Stammzellen setzten die Wissenschaftler einen 7-Tesla-Kernspintomographen ein, den sie mit eigenen Hardware-Komponenten auf höchste Empfindlichkeit optimiert hatten. Das Gerät liefert dadurch wesentlich stärkere Signale mit einem verringerten Signal-Rausch-Verhältnis und ermöglicht extrem hochaufgelöste Bilder mit 70 Mikrometer in jede Raumrichtung. Auch die Untersuchungszeit konnte durch technische Innovationen verringert werden. Darüber hinaus markierten die Forscher die embryonalen Stammzellen, die das grün fluoreszierende Protein (GFP) exprimieren, mit Hilfe eines neuen, ebenfalls von ihnen selbst entwickelten Lipofektions-Verfahrens (Lipoplexe = Komplexe aus Lipiden und DNA) zusätzlich mit einem Kernspinresonanz-Kontrastmittel. Dadurch war es erstmals möglich, selbst kleinste Gruppen von 100 oder weniger Stammzellen mit starkem Kontrast gegenüber dem Wirtsgewebe zu beobachten. Dieser Kontrast wurde durch spätere (invasive) Tests mit GFP-Fluoreszenz und Antikörperdarstellung bestätigt.

Mit ihrem neuen Kernspintomographen konnten die Wissenschaftler beobachten, wie die Zellen innerhalb von drei Wochen entlang des Corpus Callosum, der die beiden Hirnhälften überbrückt, in die andere Hirnhemisphäre wanderten und sich massiv entlang des Läsionsweges ansammelten. Deshalb vermuten die Forscher, dass die Läsion bzw. ihr Randgebiet chemische Signale - neurotrophe Faktoren, Chemokine oder Cytokine - aussendet, die als chemotaktische Signale für die Lenkung der Zellen in das Zielgebiet verantwortlich sind. In der Schlaganfall-Region selbst differenzierten sich die embryonalen Stammzellen vor allem zu adulten Neuronen- und Gliazellen. Daraus schließen die Kölner Hirnforscher, dass es in der Läsionszone einen weiteren Signalgeber geben muss, der die spätere Funktion der zuvor noch völlig undifferenzierten Stammzellen im Zielgebiet bestimmt.

Den Max-Planck-Forschern gelang es mit ihrem Kernspintomographen, die Migration der Stammzellen erstmals nichtinvasiv und in vivo zu beobachten - mit Untersuchungszeiten von ein bis zwei Stunden. Die Scans zeigten, dass die Stammzellen bei den Ratten mit Schlaganfall bis zum Herd der Schädigung hin migrierten, während sie sich in den gesunden Ratten nicht bewegten. Weitere Tests zeigten, dass sich diese Zellen sehr früh zu differenzieren begannen und eine Dendriten- bzw. Axon-artige Gestalt in der Schlaganfall-Region annahmen.

Diese Forschungsergebnisse belegen, dass die embryonalen Stammzellen über eine hohe Migrationsaktivität verfügen, die auf das Zielgebiet der Schlaganfall-Läsion gerichtet ist. Damit sind erste Voraussetzungen für eine spätere potentielle Regeneration des geschädigten Gewebes durch eine Zellersatz-Therapie gegeben. Mathias Hoehn, Leiter der Forschergruppe, betont jedoch, dass erst weitere Untersuchungen mit längerer Beobachtungsdauer zeigen werden, ob es zu einer Erholung der funktionellen Hirnaktivität und später auch zu einer Verbesserung im Verhalten kommt. Doch grundsätzlich meint er: "Unsere neue nicht-invasive Methode öffnet ein völlig neues Fenster für die Untersuchung der Zellmigration, der ihr zugrundeliegenden Signalgebung sowie der Zelldifferenzierung. Daher besteht ein heute noch gar nicht überschaubares Potential für in-vivo-Beobachtungen von Stammzell-Experimenten, nicht nur im Gehirn."

In einem Kommentar zu dieser Veröffentlichung (Nature Reviews Neuroscience, vol. 4, Februar 2003) heißt es: "Die Forscher haben eine hochauflösende Imaging-Methode entwickelt, mit der implantierte Stammzellen im Hirn verfolgt werden können. Das dürfte extrem wichtig sein, um den Erfolg von Stammzell-Transplantationen im Labor und später in der Klinik überprüfen zu können." Mathias Höhn geht davon aus, dass die Weiterentwicklung des Magnetresonanz-Systems sogar die Detektion und Verfolgung einzelner markierter Zellen ermöglichen und so Wissenschaftlern helfen könnte, die Differenzierung von Stammzellen für unterschiedliche therapeutische Zwecke zu kontrollieren und zu steuern.

Dr. Mathias Hoehn | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpin-koeln.mpg.de

Weitere Berichte zu: Kernspintomograph Nervenzelle Ratte Schlaganfall Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften