Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos im Herzen

30.01.2003


Wissenschaftler vom Berliner Fritz-Haber-Institut und der Universität Barcelona haben entdeckt, dass chaotisches Verhalten in chemischen Reaktionen oder bei Herzkammerflimmern gezielt beeinflusst und unterdrückt werden kann


Abb.: Simulation der chaotischen Wellenmuster in einem drei-dimensionalen erregbaren Medium (Visualisierung mit Hilfe der Amira-Software, R. Kaehler, Zuse-Institut Berlin und Max-Planck-Institut für Gravitationsphysik, Golm)
Foto: Fritz-Haber-Institut und Konrad-Zuse-Institut Berlin



Beim gesunden Menschen schlägt das Herz mit gleichmäßigem Rhythmus. Den Takt dazu gibt das Herz selbst in Form elektrischer Impulse vor, die sich als Wellen im Herzmuskel ausbreiten und seine regelmäßige Kontraktion auslösen. Manchmal können im Herz jedoch auch völlig unregelmäßige Erregungsmuster auftreten, die das gefürchtete Herzkammerflimmern auslösen und mathematisch als Chaos verstanden werden können. Ähnliche chaotische Wellenmuster treten auch in chemischen Reaktionen auf. A.S. Mikhailov vom Fritz-Haber-Institut in Berlin hat jetzt gemeinsam mit spanischen Wissenschaftlern entdeckt, dass man chaotisches Verhalten gezielt unterdrücken kann, indem man die Erregbarkeit solcher Systeme schwach periodisch moduliert. Gelingt dies am Herzen, kann diese Entdeckung auch zu neuen Methoden für die Behandlung von Herzflimmern führen.



Jede Sekunde entsteht im gesunden Herz eine elektrische Erregungswelle, die das ganze Herz durchläuft und seine Kontraktion erzwingt. Manchmal aber bricht solch ein geordneter Ausbreitungsprozess zusammen. Dann wird das Herz vielen irregulären Erregungswellen ausgesetzt, die normalen physiologischen Kontraktionen verschwinden und das gefährliche Herzkammerflimmern (Fibrillation) setzt ein. Wenn der Betroffene nicht rasch behandelt wird, ist der Herztod unvermeidbar.

Aus mathematischer Sicht kann man das Herzflimmern als eine besondere Form von Wellenchaos betrachten. Ein ähnliches Chaos tritt auch in chemischen erregbaren Medien, wie z.B. in der berühmten Belousov-Zhabotinsky-Reaktion, auf. Die Belousov-Zhabotinsky-Reaktion ist eine oszillierende chemische Reaktion, die ihren Zustand rhythmisch ändert, was man zum Beispiel an einem periodischen Farbwechsel erkennen kann. Bei experimentellen Untersuchungen dieser Reaktion hatte der amerikanische Wissenschaftler Arthur Winfree bereits 1973 so genannte rotierende Scroll-Wellen entdeckt. Eine Scroll-Welle sieht in ihrem transversalen Querschnitt wie eine Spirale aus. Solche Spiralen sind übereinander gestapelt, so dass sich eine aufgerollte Struktur bildet, die man sich am einfachsten an Hand eines lose aufgerollten Papierblatts vorstellen kann. Die Wellen in dieser Struktur rotieren um einen zentralen Faden, der gerade oder gekrümmt ist, aber auch Schleifen und Ringe bilden kann. Später sagte Winfree voraus, dass sich durch eine ungeordnete Dynamik solcher Fäden ein Chaos in dreidimensionalen erregbaren Medien entwickeln kann. Seiner Meinung nach könnte sich die Entstehung von Kammerflimmern sowie der plötzliche Herztod oft durch solche chaotischen Prozesse erklären lassen.

Die gemeinsamen Untersuchungen von Alexander S. Mikhailov von der Abteilung Physikalische Chemie des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin und Sergio Alonso sowie Francisco Sagues von der Universität Barcelona haben nun ergeben, dass das Chaos von Scroll-Wellen tatsächlich ein typisches Phänomen ist, dass auch in ganz allgemeinen Modellen erregbarer Medien beobachtet werden kann. Die Abbildung zeigt ein Beispiel solcher chaotischer Wellenmuster.

Bereits im Jahr 2001 war es Mikhailov gemeinsam mit Kollegen am Fritz-Haber-Institut gelungen, chaotische Strukturen in einer chemischen Reaktion zu beobachten und sogar zu steuern [1]. In der neuen Veröffentlichung in "Science" haben die Wissenschaftler jetzt bewiesen, dass das Chaos von Scrollwellen generell durch schwache periodische Modulation von Parametern, die die Erregungsschwelle des Mediums bestimmen, gezielt gesteuert und damit sowohl unterdrückt als auch induziert werden kann. Diese Entdeckung, die nunmehr in abstrakten mathematischen Modellen verifiziert ist, kann in Zukunft zu neuen Methoden für die Unterdrückung des Herzkammerflimmerns und zur Behandlung spezieller Herzkrankheiten führen.

Originalveroffentlichung:
Sergio Alonso, Francesco Sagues, Alexander S. Mikhailov
"Taming Winfree Turbulence of Scroll Waves in Excitable Media" Science, 30 January 2003


Weitere Informationen erhalten Sie von:
Prof. Dr. Alexander S. Mikhailov
Complex Systems Research Group
Department of Physical Chemistry
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: 030 8413 - 5122
Fax: 030 8413 - 5106
E-Mail: mikhailov@fhi-berlin.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri01/pri0131.htm
http://www.mpg.de/pri03/pri0309.pdf
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Herzkammerflimmern Kontraktion Scroll-Wellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen