Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos im Herzen

30.01.2003


Wissenschaftler vom Berliner Fritz-Haber-Institut und der Universität Barcelona haben entdeckt, dass chaotisches Verhalten in chemischen Reaktionen oder bei Herzkammerflimmern gezielt beeinflusst und unterdrückt werden kann


Abb.: Simulation der chaotischen Wellenmuster in einem drei-dimensionalen erregbaren Medium (Visualisierung mit Hilfe der Amira-Software, R. Kaehler, Zuse-Institut Berlin und Max-Planck-Institut für Gravitationsphysik, Golm)
Foto: Fritz-Haber-Institut und Konrad-Zuse-Institut Berlin



Beim gesunden Menschen schlägt das Herz mit gleichmäßigem Rhythmus. Den Takt dazu gibt das Herz selbst in Form elektrischer Impulse vor, die sich als Wellen im Herzmuskel ausbreiten und seine regelmäßige Kontraktion auslösen. Manchmal können im Herz jedoch auch völlig unregelmäßige Erregungsmuster auftreten, die das gefürchtete Herzkammerflimmern auslösen und mathematisch als Chaos verstanden werden können. Ähnliche chaotische Wellenmuster treten auch in chemischen Reaktionen auf. A.S. Mikhailov vom Fritz-Haber-Institut in Berlin hat jetzt gemeinsam mit spanischen Wissenschaftlern entdeckt, dass man chaotisches Verhalten gezielt unterdrücken kann, indem man die Erregbarkeit solcher Systeme schwach periodisch moduliert. Gelingt dies am Herzen, kann diese Entdeckung auch zu neuen Methoden für die Behandlung von Herzflimmern führen.



Jede Sekunde entsteht im gesunden Herz eine elektrische Erregungswelle, die das ganze Herz durchläuft und seine Kontraktion erzwingt. Manchmal aber bricht solch ein geordneter Ausbreitungsprozess zusammen. Dann wird das Herz vielen irregulären Erregungswellen ausgesetzt, die normalen physiologischen Kontraktionen verschwinden und das gefährliche Herzkammerflimmern (Fibrillation) setzt ein. Wenn der Betroffene nicht rasch behandelt wird, ist der Herztod unvermeidbar.

Aus mathematischer Sicht kann man das Herzflimmern als eine besondere Form von Wellenchaos betrachten. Ein ähnliches Chaos tritt auch in chemischen erregbaren Medien, wie z.B. in der berühmten Belousov-Zhabotinsky-Reaktion, auf. Die Belousov-Zhabotinsky-Reaktion ist eine oszillierende chemische Reaktion, die ihren Zustand rhythmisch ändert, was man zum Beispiel an einem periodischen Farbwechsel erkennen kann. Bei experimentellen Untersuchungen dieser Reaktion hatte der amerikanische Wissenschaftler Arthur Winfree bereits 1973 so genannte rotierende Scroll-Wellen entdeckt. Eine Scroll-Welle sieht in ihrem transversalen Querschnitt wie eine Spirale aus. Solche Spiralen sind übereinander gestapelt, so dass sich eine aufgerollte Struktur bildet, die man sich am einfachsten an Hand eines lose aufgerollten Papierblatts vorstellen kann. Die Wellen in dieser Struktur rotieren um einen zentralen Faden, der gerade oder gekrümmt ist, aber auch Schleifen und Ringe bilden kann. Später sagte Winfree voraus, dass sich durch eine ungeordnete Dynamik solcher Fäden ein Chaos in dreidimensionalen erregbaren Medien entwickeln kann. Seiner Meinung nach könnte sich die Entstehung von Kammerflimmern sowie der plötzliche Herztod oft durch solche chaotischen Prozesse erklären lassen.

Die gemeinsamen Untersuchungen von Alexander S. Mikhailov von der Abteilung Physikalische Chemie des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin und Sergio Alonso sowie Francisco Sagues von der Universität Barcelona haben nun ergeben, dass das Chaos von Scroll-Wellen tatsächlich ein typisches Phänomen ist, dass auch in ganz allgemeinen Modellen erregbarer Medien beobachtet werden kann. Die Abbildung zeigt ein Beispiel solcher chaotischer Wellenmuster.

Bereits im Jahr 2001 war es Mikhailov gemeinsam mit Kollegen am Fritz-Haber-Institut gelungen, chaotische Strukturen in einer chemischen Reaktion zu beobachten und sogar zu steuern [1]. In der neuen Veröffentlichung in "Science" haben die Wissenschaftler jetzt bewiesen, dass das Chaos von Scrollwellen generell durch schwache periodische Modulation von Parametern, die die Erregungsschwelle des Mediums bestimmen, gezielt gesteuert und damit sowohl unterdrückt als auch induziert werden kann. Diese Entdeckung, die nunmehr in abstrakten mathematischen Modellen verifiziert ist, kann in Zukunft zu neuen Methoden für die Unterdrückung des Herzkammerflimmerns und zur Behandlung spezieller Herzkrankheiten führen.

Originalveroffentlichung:
Sergio Alonso, Francesco Sagues, Alexander S. Mikhailov
"Taming Winfree Turbulence of Scroll Waves in Excitable Media" Science, 30 January 2003


Weitere Informationen erhalten Sie von:
Prof. Dr. Alexander S. Mikhailov
Complex Systems Research Group
Department of Physical Chemistry
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: 030 8413 - 5122
Fax: 030 8413 - 5106
E-Mail: mikhailov@fhi-berlin.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri01/pri0131.htm
http://www.mpg.de/pri03/pri0309.pdf
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Herzkammerflimmern Kontraktion Scroll-Wellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie