Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Laser einzelnen Molekülen auf der Spur

28.01.2003



Manche Medikamente helfen, und niemand weiß, warum. In Zukunft könnte ihnen das Aus drohen: In Anbetracht leerer Kassen werden die Versicherungen zukünftig wohl verstärkt nur für solche Arzneien aufkommen, bei denen das Wirkprinzip oder zumindest der Wirkstoff bekannt sind. Die Floureszenz-Korrelations-Spektroskopie (FCS) hilft Pharma-Forschern zu verstehen, wie Arzneimittel in der lebenden Zelle wirken.

... mehr zu:
»Adrenalin »FCS »Molekül »Rezeptor »Zelle

Einer der wenigen deutschen Experten auf diesem noch jungen Gebiet ist Professor Dr. Hanns Häberlein, der nun an der Universität Bonn die neue Stiftungsprofessur für "Zellbiologie und molekulare Wirkstoffforschung" angetreten hat. Die Firma Engelhard Arzneimittel finanziert die Professur in den nächsten fünf Jahren mit insgesamt 500.000 Euro.

Als Professor Häberlein 1996 damit begann, die vielversprechende Methode anzuwenden, gehörte er zu den wenigen Exoten in der deutschen Wissenschaftslandschaft, die sich mit FCS beschäftigten. In den letzten Jahren hat er die Methode so weiter entwickelt, dass man sie auch an lebenden Zellen anwenden kann. Über dieses Know-how verfügen bisher nur eine Handvoll deutscher Forscher - eine Tatsache, die der Arzneimittel-Hersteller Engelhard durch die Stiftung der Professur für "Zellbiologie und molekulare Wirkstoffforschung" ändern möchte.


Die FCS erlaubt es, einzelne Moleküle unter die Lupe zu nehmen. Einzige Voraussetzung: Die Substanzen, die untersucht werden sollen, müssen fluoreszieren. Als "Fluoreszenz" bezeichnen Chemiker die Fähigkeit mancher Stoffe, bei Lichteinfall farbig zu leuchten. Sofern sie das nicht schon von Natur aus tun, lässt sich das meist durch entsprechende chemische Veränderungen erreichen. Bei der FCS nutzt man diese Eigenschaft, um zu untersuchen, inwieweit bestimmte Moleküle miteinander in Kontakt treten.

Viele Moleküle in einem Organismus haben einzig und allein die Aufgabe, Informationen von einem Ort zum anderen zu transportieren. So schüttet der Körper bei Gefahr Adrenalin aus, das unter anderem der Leber "befiehlt", energiereiche Glucose zur Verfügung zu stellen, die die Beinmuskulatur bei der Flucht als "Treibstoff" dringend benötigt. Signalmoleküle wie das Adrenalin "docken" dazu an bestimmte Rezeptoren an. Rezeptoren sind Eiweiße auf der Oberfläche von Zellen, die dann die nötigen Stoffwechselreaktionen in der Zelle veranlassen. Mit der FCS können Forscher derartige Vorgänge beobachten: Dazu beleuchten die Wissenschaftler beispielsweise einen winzigen Bereich auf der Zelloberfläche mit einem Laserstrahl. Wenn das zu untersuchende Molekül in den Lichtstrahl tritt, beginnt es zu leuchten; ein hochempfindliches Messgerät erfasst dieses Licht, das man auch als Fluoreszenzsignal bezeichnet. Kleine Moleküle wie das Adrenalin bewegen sich sehr schnell durch den beleuchteten Bereich und werden daher nur für eine kurze Zeit vom Laserstrahl erfasst: Das Fluoreszenzsignal steigt nur kurz an und sinkt dann wieder ab. Größere Moleküle wie z.B. Eiweiße brauchen dagegen länger, um den Strahl zu durchqueren; das Fluoreszenzsignal hält länger an. Sobald daher das Adrenalin an einen Rezeptor auf der Zelloberfläche andockt, verlangsamt es sich, weil der Komplex aus Rezeptor und Adrenalin viel größer ist als das Adrenalin allein. Komplex und Einzelmoleküle lassen sich daher durch ihre verschiedenen Geschwindigkeiten einfach voneinander unterscheiden - und zwar direkt bei lebenden Zellen. Dies ermöglicht eine Vielzahl neuartiger Untersuchungen.

Die Methode ist insbesondere für Wirkstoffforscher hochinteressant: Ob die Betäubungsspritze beim Zahnarzt oder das Medikament gegen Fieber: Fast alle entfalten ihre Wirkung, indem sie mit Eiweißen (Rezeptoren oder Enzymen) in Kontakt treten und dadurch bestimmte Reaktionen in der entsprechenden Zelle hervorrufen. Häufig möchten die Pharmakologen den Kontakt zwischen Wirkstoff und Rezeptor verbessern, indem sie den Wirkstoff chemisch verändern. Mit der FCS können sie an der lebenden Zelle den Erfolg ihrer Maßnahme kontrollieren.

"Mit unseren Messungen an lebenden Lungenepithelzellen haben wir völliges Neuland betreten", erklärt Professor Häberlein: Vor allem die große Hintergrundfluoreszenz macht die Arbeit mit ganzen Zellen so schwierig, dass sich bislang nur wenige Teams mit dieser Aufgabe beschäftigen. Der Wissenschaftler versteht sich als sinnvolle Ergänzung des Bonner Instituts für Physiologische Chemie: Schließlich biete die zellbiologische Forschung in Bonn - vertreten durch die Arbeitsgruppen von Professor Dr. Volkmar Gieselmann, Professor Dr. Thomas Magin und Professor Dr. Ernst Bause - hervorragende Möglichkeiten, auch auf dem Gebiet der Wirkstoffforschung zu kooperieren. "Mit der Etablierung der Fluoreszenz-Korrelations-Spektroskopie versuche ich dazu beizutragen, die molekulare Interaktion in lebenden Zellen besser zu verstehen."

Ansprechpartner:

Professor Dr. Hanns Häberlein
Institut für Physiologische Chemie der Universität Bonn
Telefon: 0228/73-6555
E-Mail: haeberlein@institut.physiochem.uni-bonn.de


Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/Aktuelles/Presseinformationen

Weitere Berichte zu: Adrenalin FCS Molekül Rezeptor Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften