Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch die Letzten können die Ersten sein

17.01.2003


Max-Planck-Mathematiker beweisen: In der Evolution siegen nicht immer nur die Schnellsten


Abb.: Evolutionäre Bahnen (Trajektorien) für symbiotische Beziehungen. Die gelbe Kurve trennt die beiden unterschiedlichen Verhaltensdomänen. Die vertikalen und horizontalen Linien (grau) zeigen die Stellen, an denen die Verhaltensstrategie ihre Richtung ändert. Die roten Trajektorien führen zu einem Gleichgewicht zugunsten der Spezies 1, die blauen Trajektorien zugunsten von Spezies 2. Die obere rechte Ecke entspricht der Kombination egoistisch-egoistisch und begünstigt die Langsamentwickler, und die untere linke Ecke die Schnellentwickler.

Grafik: Max-Planck-Institut für Mathematik in den Naturwissenschaften



Bisher sind Evolutionsbiologen davon ausgegangen, dass es für eine Tierart in der Evolution von Vorteil ist, sich im Vergleich zu anderen schneller zu entwickeln, besser anzupassen und rasch zu lernen. In der internationalen Fachzeitschrift "Proceedings of the National Academy of the United States" belegen jetzt Wissenschaftler vom Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig sowie von der University of Washington/USA, dass dies nicht immer der Fall ist (PNAS, 21. Januar 2003).



Den Wettlauf zwischen Wirt und Parasit bezeichnet man heute in der Evolutionsbiologie als "Red Queen"-Prinzip, nach einer Figur in Lewis Carroll’s Kinderbuch "Alice hinter den Spiegeln". In dieser Spiegelwelt muss man sich möglichst schnell bewegen, um überhaupt an Ort und Stelle stehen bleiben zu können. "Now here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!" Auch in der Evolution findet dieser scheinbar sinnlose Wettlauf statt: Arten, die in der Lage sind, sich schneller anzupassen als ihr Gegenspieler, gewinnen die Oberhand. Doch neuere Forschungen zeigen nun, dass dies nicht der Fall ist, wenn man symbiotische Beziehungen zwischen verschiedenen Spezies betrachtet. Zwar findet auch hier ein ständiger Wettkampf statt. Doch zahlt es sich in diesen Beziehungen, in denen die eine auf die andere Art angewiesen ist, durchaus aus, langsamer zu sein, da sich die schneller entwickelnde Art nach und nach an die Bedürfnisse der sich langsam entwickelnden anpassen wird.

Symbiotische Wechselbeziehungen, in denen eine Spezies der anderen zu Diensten ist, gibt es in der Natur in Hülle und Fülle. Beispiele gibt es überall: Von den Mitochondrien, einst frei-lebende Bakterien, die heute in unseren Körperzellen Energie aus der Verdauung von Zucker liefern, über Pilze, die Pflanzen in die Lage versetzen, Stickstoff aus der Erde aufzunehmen, bis hin zu Ameisen, die Schmetterlingsraupen gegen Feinde schützen und dafür hochwertige Nahrung erhalten. In diesem konkreten Fall haben die Ameisen einen beträchtlichen Vorteil davon, Schmetterlingsraupen gegen todbringende Parasiten zu schützen. Denn im Gegenzug investieren die Raupen einen Großteil ihrer Energie in die Produktion von Zucker- und Protein reichen Sekreten, die den Ameisen als Nahrungsquelle dienen. Doch wer profitiert bei einem solchen Tauschhandel am meisten? Sind es die Ameisen, wenn sie nur minimalen Schutz gewähren und sich dafür viel Nahrung nehmen? Oder ist es die Raupe, wenn sie sich von den Ameisen maximal beschützen lässt, selbst aber bei der Nahrungsvergabe geizt? anderen Nahrungsquellen begeben.

Michael Lachmann vom Leipziger Max-Planck-Institut für Mathematik in den Naturwissenschaften und Carl Bergstrom von der University of Washington untersuchten diese Frage mit Hilfe eine mathematischen Modells aus der evolutionären Spieltheorie. In solchen Modellen hängt die allgemeine Fitness aller Mitspieler vom Erfolg jedes Einzelnen im Spiel ab. Dazu verallgemeinerten sie das Verhalten jeder Spezies als "großzügig", wenn er vom Gewinn an andere abgibt, und als "egoistisch", wenn es immer nur um den maximalen Gewinn des einzelnen geht. In einer Symbiose profitieren zwei Arten am meisten, wenn sie sich abstimmen, wer sich "egoistisch" oder "großzügig" verhalten soll. Anderenfalls ist der Gewinn für beide suboptimal - wenn also beide entweder "egoistisch" oder "großzügig" sind.

Sind alle Mitglieder der Population großzügig und die der anderen Spezies alle egoistisch, kann es keinen evolutionären Wandel geben, da keine Spezies aus einer Veränderung ihres Verhaltens einen Vorteil ziehen könnte. Treten jedoch die Kombinationen egoistisch-egoistisch oder großzügig-großzügig in einigen Fällen auf, kann die Evolution weitergehen. Sind viele der Paare vom Typ "großzügig-großzügig", wird die schneller entwickelnde Spezies sehr rasch egoistisch werden. In dieser Population hätten also die Schnellentwickler Vorteile. Gibt es andererseits mehr Paare der Art "egoistisch-egoistisch", wird die sich schneller entwickelnde Spezies sehr rasch großzügig (da großzügig-egoistisch besser ist als egoistisch-egoistisch), so dass in dieser Population die Langsamentwickler begünstigt werden.

Lachmann und Bergstrom gaben diesem überraschend entdeckten Prinzip den Namen "Red King-Effekt": Er besagt, dass in Beziehungen zwischen Arten, die ihre Strategien miteinander koordinieren müssen, es sich nicht unbedingt lohnt, der Schnellere zu sein. Vielmehr hat in vielen Fällen dann der Langsamentwickler Vorteile. Doch es gibt noch einen weiteren Grund, warum die Langsamen dann gewinnen: Jede Spezies entwickelt sich am besten, wenn sie selbst egoistisch ist und die anderen großzügig. Dann kann man erwarten, dass die meisten Individuen einer Spezies aus Umgebungen stammen, in denen sie egoistisch waren. Das bedeutet, dass es ein Ungleichgewicht zugunsten der egoistisch-egoistisch Paare gibt, was wiederum die Langsamentwickler begünstigt.

In bestimmten evolutionären Szenarios muss man sich so schnell wie möglich entwickeln, um am gleichen Platz stehen zu bleiben, wie es die Rote Königin bei Lewis Carroll sagen würde, und in anderen Szenarios zahlt es sich aus, nur einen Schritt nach dem anderen zu machen, wie es der Rote König tun würde, und geduldig darauf zu warten, dass der andere den großen Schritt macht.

"Das Red King-Modell ist auch für die evolutionäre Ökonomie von Interesse. So ist es im Handel manchmal von Vorteil, die Hand seines Partners bereits "gebunden" zu haben ("one’s hands tied"). Von daher trifft es auf Individuen oder Unternehmen zu, die eng miteinander agieren, und deren Interaktion zu unterschiedlichen Ergebnisse führen kann - seien es feste Vereinbarungen oder stabile Beziehungen," meint Michael Lachmann.

Die Untersuchung von Evolution und Lernen in biologischen Systemen gehört zum Forschungsschwerpunkt "Dynamik komplexer Systeme" am Max-Planck-Institut für Mathematik in den Naturwissenschaften. Weitere Forschungsthemen des Instituts sind Dynamik neuronaler Netzwerke, Informationsverarbeitung und Lernen in kognitiven Systemen, Synchronisation und Zeitverzögerung in komplexen Systemen, Analyse genetischer Netzwerke, mathematische Modelle der Chemotaxis, sowie das Wachstum von Tumoren.

Original-Veröffentlichung:
Carl T. Bergstrom and Michael Lachmann
The Red King effect: When the slowest runner wins the coevolutionary race.
PNAS published January 13, 2003, 10.1073/pnas.0134966100

Weitere Informationen erhalten Sie von:

Michael Lachmann
Max-Planck-Institute für Mathematik in Naturwissenschaften, Leipzig
Tel.: (03 41) 99 59 - 8 54
Fax: (03 41) 99 59 - 6 58
E-Mail: lachmann@mis.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mis.mpg.de/
http://www.mpg.de/pri03/pri0304.pdf

Weitere Berichte zu: Ameise Evolution Naturwissenschaft Spezie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen