Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forschende machen Proteine in der Oberfläche eines Zellkerns sichtbar

15.01.2003


Der Zellkern, in welchem die genetische Information sitzt, kommuniziert mit dem Rest der Zelle durch so genannte Kernporen. Wie ändern diese Kernporen ihre Struktur, wenn speziell präparierte Moleküle andocken? Warum bleiben einige Moleküle regelrecht in der Pore stecken, während andere elegant hindurchgleiten? Die Januar-Ausgabe des Wissenschaftsmagazins "Biophysical Journal" berichtet von dieser Forschungsarbeit, für die Wissenschaftler aus den Disziplinen Biologie und Physik ihre Kräfte gebündelt haben.



Im Zellkern ist nicht nur die genetische Information der einzelnen Zelle, sondern auch des gesamten Organismus gespeichert. Jede Zelle eines mehrzelligen Lebewesens, z.B. des Menschen, verfügt über den gleichen DNA-Satz. Die Kommunikation des Zellkerns mit dem Rest der Zelle und umgekehrt entscheidet darüber, dass die Zellen richtig funktionieren und somit das Überleben des Organismus garantieren. Der Kernporenkomplex stellt den einzigen Weg für die makromolekulare Kommunikation zwischen Zellkern und dem Rest der Zelle dar.



Strukturelle Eigenschaften korrelieren mit funktionellen Eigenschaften

Forschende der ETH-Institute für Festkörperphysik und für Biochemie haben die Struktur des Kernporenkomplexes genauer untersucht und dabei die Frage geklärt, ob sich die Struktur durch das Binden von Molekülen ändert. Bei diesen Molekülen handelt es sich einerseits um so genannte Transportrezeptoren, von denen man weiss, dass sie den Transport in den Zellkern vermitteln, und anderseits um Alkohole. Aus früheren biochemischen Untersuchungen war bereits bekannt, dass die Transportkapazitäten des Porenkomplexes durch das Binden dieser Moleküle verändert wird. Die Untersuchungen zeigten nun tatsächlich, dass sich auch die Struktur der Porenkomplexe ändert, d.h. Änderungen in der Transportkapazität in und aus dem Kern korrelieren mit Änderungen in der Struktur des Kernporenkomplexes.

Brücke von der Physik in die Biologie

Für die Untersuchungen verwendeten die Forschenden die so genannte Rasterkraftmikroskopie. Dabei tastet eine feine Spitze die Oberfläche ab und erstellt so ein Profil. Durch das Zusammensetzen aller gemessenen Profile entsteht ein dreidimensionales Bild der untersuchten Oberfläche. Biologische Strukturen unterscheiden sich aber stark von denjenigen, die üblicherweise in der Physik untersucht werden. Am Institut für Festkörperphysik der ETH Zürich wurde die Methode der Rasterkraftmikroskopie optimiert, um auch weiche biologische Oberflächen mit grosser Genauigkeit abzubilden. Die ETH-Physiker haben damit einen Weg gefunden, wie biologische Strukturen - in diesem Fall Kernporenkomplexe - in annähernd natürlichem Zustand untersucht werden können. Dazu haben sie sich mit Forschenden aus dem Institut für Biochemie zusammengeschlossen.

Beatrice Huber | idw
Weitere Informationen:
http://www.cc.ethz.ch/medieninfo
http://www.biophysj.org/cgi/content/full/84/1/665

Weitere Berichte zu: Kernporenkomplex Molekül Physik Zelle Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie