Ein uraltes Enzym mit neuen Funktionen

Bei der Synthese und Reifung der Transfer-RNA spielt das Ribozym RNAse P eine wichtige Rolle: Es entfernt überflüssige Teile (schraffiert) aus dem so genannten Primärtranskript und macht die Transfer-RNA dadurch erst funktionsfähig. Grafik: Schön

Ribozyme sind eine Klasse von biologischen Katalysatoren, die in allen Lebewesen vorkommen – von Bakterien bis hin zum Menschen. Dank ihrer ganz speziellen Fähigkeiten können sie in Zukunft möglicherweise beim Kampf gegen Viren und krankhaft veränderte Gene eingesetzt werden. Biochemiker von der Universität Würzburg sammeln grundlegende Erkenntnisse über die Ribozyme.

Zellen bestehen hauptsächlich aus drei Arten von Großmolekülen: DNA, RNA und Protein. Zwischen diesen besteht eine eindeutige Arbeitsteilung: Die DNA, also das genetische Material, ist der Informationsspeicher, der den Bauplan für die Proteine enthält. Diese wiederum bilden die Zellstrukturen oder arbeiten als Enzyme im Zellstoffwechsel. Dazwischen stehen als Bindeglied die verschiedenen Formen der RNA, welche die genetische Information von der DNA bis hin zu den Orten der Proteinsynthese übermitteln.

Diese strikte Arbeitsteilung existierte in den ältesten „Ur-Organismen“ wahrscheinlich noch nicht, wie Dr. Astrid Schön vom Institut für Biochemie der Universität Würzburg erläutert. Vielmehr übernahmen die RNAs alle genannten Aufgaben. Noch heute gebe es Hinweise auf diese urtümliche „RNA-Welt“: Viele kleine Moleküle, die für den Stoffwechsel benötigt werden, wie zum Beispiel Vitamine, leiten sich von RNA-Bausteinen ab. In dieser Welt sind auch die Ribozyme zu Hause, denn sie sind nichts anderes als enzymatisch aktive RNA.

Einem Ribozym namens RNase P kommt eine zentrale Rolle im Zellstoffwechsel zu: Es spaltet die noch inaktiven Vorläufer der so genannten Transfer-RNA, welche dadurch erst funktionsfähig wird und dann beim Aufbau der Proteine eine wichtige Rolle spielt. Würde dieses Ribozym ausfallen, dann wäre die Informationskette unterbrochen, die von der DNA zu den Proteinen führt.

Die RNase P und weitere Ribozyme können aber nicht nur die Vorläufer der Transfer-RNA, sondern auch noch andere RNA-Moleküle ganz spezifisch spalten. Dies macht sie laut Dr. Schön zu geeigneten Werkzeugen beim Kampf gegen Krankheiten: Schließlich können sowohl Viren als auch krankhaft veränderte zelleigene Gene über den „Mittelsmann“ RNA Proteine hervorbringen, die für den Körper schädlich sind. Mit Ribozymen könnte man möglicherweise schon den Mittelsmann ganz gezielt ausschalten.

Doch bevor solche Anwendungen in der Grundlagenforschung oder in der Medizin möglich sind, müssen Struktur und Funktion der RNase P aus möglichst vielen Organismengruppen sehr gut bekannt sein. Genau dieses Wissen will die Gruppe um Dr. Schön erarbeiten. Gefördert wird das Projekt der Würzburger Biochemiker von der Deutschen Forschungsgemeinschaft.

Weitere Informationen: Dr. Astrid Schön, T (0931) 888-4038, Fax (0931) 888-4028, 
E-Mail: schoen@biozentrum.uni-wuerzburg.de

Media Contact

Robert Emmerich idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer