Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unser Gehirn Eindrücke verrechnet

22.11.2002


Farb- und Größen-Metamer. Rotes plus grünes Licht führt zur Wahrnehmung von Gelb. Dieses zusammengesetzte Gelb ist nicht zu unterscheiden von einem monochromatischen Gelb (oben). Die Frage ist, ob es solche Metamere auch bei der räumlichen Wahrnehmung gibt. Das untere Bild illustriert einen entsprechenden Versuchsaufbau für die Größenwahrnehmung eines Objekts. Verschmelzen "gefühlte" und "gesehene" Größeninformation miteinander, so dass man die Signale nicht mehr einzeln wahrnimmt? Wäre das der Fall, dann gäbe es tatsächlich Größen-Metamere. In der hier vorgestellten Studie konnten diese experimentell jedoch nicht nachgewiesen werden. Werden dagegen verschiedene visuelle Signale "verrechnet", wie perspektivisches und stereoskopisches Sehen, so kommt es zu einer Verschmelzung der einzelnen Komponenten.

Grafik: Max-Planck-Institut für biologische Kybernetik


Wenn unser Gehirn verschiedene Sinnesreize miteinander verrechnet, verliert es unter Umständen die Information über die einzelnen Komponenten (Sinnesreize) aus denen sich die Wahrnehmung zusammensetzt.


Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen, der University of California Berkeley und der New York University haben herausgefunden, dass dieser Verlust eintritt, wenn verschiedene visuelle Signale kombiniert werden. Dagegen lassen sich Informationen, die von unterschiedlichen Sinnen kommen, wie dem Tast- und dem Sehsinn, nach wie vor wieder in ihre Einzelkomponenten zerlegen.

Um sich ein Bild von der Welt zu machen, verarbeitet unser Gehirn alle Informationen, die ihm über die Sinnesorgane zur Verfügung gestellt werden. Wie in einem Puzzle-Spiel setzt es die einzelnen Teilinformationen, die wir dabei von einem Objekt erhalten, zu einem Gesamtbild zusammen. Diesem Zusammensetzen liegt ein komplexer Verrechnungsprozess zu Grunde: Schon innerhalb einer Sinnesmodalität, also etwa dem Sehen, stehen mehrere Einzelsignale zur Verrechnung an. So geben zum Beispiel perspektivische Verzerrungen, stereoskopische Signale, Schattierungen und auch Verdeckungen Aufschluss über die räumliche Struktur eines Objektes. Hinzu kommen noch weitere Informationen - wie sie Hör- oder Tastsinn liefern - die das Gehirn ebenfalls einbezieht. Dadurch entsteht schließlich in unserem Bewusstsein eine komplexe Objektwahrnehmung.


Dass das Gehirn bei diesen Verknüpfungen die Sinnesdaten nicht blind zusammenwürfelt, sondern statistisch optimal verrechnet, hatten Max-Planck-Forscher Marc Ernst aus Tübingen und Martin Banks von der University of California in Berkeley bereits Anfang dieses Jahres nachgewiesen (vgl. PRI B 2 / 2002 (5)). In ihrer neuesten Studie versuchen die beiden Forscher zusammen mit James Hillis von der University of Pennsylvania in Philadelphia und Michael Landy von der New York University herauszufinden, welche Folgen dieses statistisch optimierte Verhalten des Gehirns außerdem hat.

Überblendet man rotes mit grünem Scheinwerferlicht, so nimmt der Betrachter lediglich gelbes Licht wahr. Er kann auf dieser Ebene nicht mehr zwischen zusammengesetztem Gelb und monochromatischem Gelb unterscheiden. Die Forscher bezeichnen solche physikalisch unterschiedlichen Reize, die zur selben Wahrnehmung führen, als Metamere. Farb-Metamere sind also ein Beispiel für einen Verarbeitungsmechanismus, dessen Wahrnehmungsergebnis vom Betrachter nicht mehr in seine ursprünglichen Komponenten zerlegt werden kann - unser Gehirn erlaubt uns keinen Zugriff mehr auf die ursprüngliche rot-grün Information. Eine interessante Frage für die Wissenschaftler lautet nun, ob das Gehirn nach Zusammenführen räumlicher Informationen noch in der Lage ist, auf die einzelnen Sinnesinformationen zuzugreifen oder ob diese Informationen ebenfalls - wie im Beispiel des gelben Lichts - beim Verrechnungsvorgang verloren gehen. Verkürzt lautet die Frage also: Gibt es neben den Farb-Metameren auch so etwas wie Metamere der räumlichen Wahrnehmung?

Um diese Frage zu beantworten, führten die Forscher zwei Experimente zur räumlichen Wahrnehmung durch. Im ersten Experiment mussten die Versuchspersonen die Größe eines Balkens schätzen und durften hierfür sowohl ihren Seh- als auch ihren Tastsinn einsetzen. Auf der Verrechnungsebene laufen also "gesehene" und "gefühlte" Größeninformationen ein. Im zweiten Experiment sollten die Versuchspersonen die Neigung einer Fläche abschätzen; diese Aufgabe war jedoch ausschließlich visuell zu lösen. Auch die Neigung der Fläche wurde über zwei Komponenten erfasst - hier aber über zwei ausschließlich visuelle Komponenten, dem perspektivischen und dem stereoskopischen Sehen. In jeweils beiden Experimenten konnten die Wissenschaftler die einzelnen Komponenten getrennt voneinander manipulieren.

Die Versuchspersonen sollten nun zwischen Objekten (Balken bzw. geneigte Flächen) unterscheiden, die aus diesen Komponenten mit jeweils unterschiedlichem Betrag zusammengesetzt waren. Dabei setzten die Forscher einen Trick ein: Sie wählten den Betrag mit dem die einzelnen Komponenten quasi in die Verrechnung eingehen so, dass die Objekte im Ergebnis des Verrechnungsprozesses jeweils die gleiche Größe (Balken) bzw. die gleiche Neigung (Flächen) hatten. Sollte es den Versuchspersonen trotzdem nach wie vor möglich sein, die Objekte zu unterscheiden, wäre das der Beweis dafür, dass das Gehirn nach wie vor auf die Einzelinformationen zugreifen, die Objekte also quasi wieder in seine Komponenten zerlegen kann (gäbe es keine Farb-Metamere, so könnten wir also tatsächlich die rot / grün Information wieder herausfiltern).

Die beiden Experimente lieferten unterschiedliche Ergebnisse: Durften die Versuchspersonen sowohl ihren Seh- als auch ihren Tastsinn zu Hilfe nehmen, so waren sie problemlos in der Lage, eine Unterscheidung zwischen den Objekten zu treffen. Das heißt, es gibt keine Größen-Metameren. Visuelle und haptische Sinnesreize verschmelzen nicht miteinander - die Signale werden (anders als die rot-grün-Information) nach wie vor einzeln wahrgenommen. Das beobachten wir auch im Alltagsleben in Situationen, in denen Sehen und Fühlen verschiedene Informationen an das Gehirn weiterleiten - etwa, wenn man ein Objekt betastet und gleichzeitig ein anderes anschaut.

Im zweiten Experiment dagegen ging die Unterscheidungsfähigkeit verloren. Für stereoskopisches und perspektivisches Sehen, so die Schlussfolgerung der Wissenschaftler, existieren offensichtlich Metamere. Und auch das ist bei näherer Betrachtung durchaus sinnvoll, denn für das visuelle System kann es keine zwei Objekte an derselben Stelle geben. Ob sich dieser Effekt auch bei anderen Sinnen und Sinnesreizen nachweisen lässt, wollen die Forscher in weiteren Experimenten nun prüfen.

Weitere Auskünfte erteilt:

Dr. Marc O. Ernst
Max-Planck-Institut für biologische Kybernetik
Spemannstr. 38
72076 Tübingen
Tel.: 07071-601-644
Fax: 07071-601-616
E-Mail: marc.ernst@tuebingen.mpg.de

Rainer Rosenzweig
Max-Planck-Institut für biologische Kybernetik
Tel.: 07071-601-561
Fax: 07071-601-520
E-Mail: rainer.rosenzweig@tuebingen.mpg.de

Dr. Marc O. Ernst | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.kyb.tuebingen.mpg.de

Weitere Berichte zu: Metamere Sinnesreize Tastsinn Wahrnehmung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften