Gold-Nanopartikel finden Anwendung in der Biomedizinforschung

Gold – da kriegen nicht nur Millionäre vom Schlage eines Dagobert Duck strahlende Augen. Fluoreszierenden Molekülen aber geht in der Nähe des Edelmetalls alle Leuchtkraft verloren.

Das haben jetzt die LMU-Physiker Prof. Jochen Feldmann, Dr. Thomas Klar und Dipl.-Phys. Eric Dulkeith in Zusammenarbeit mit Wissenschaftlern in Ulm und Potsdam sowie dem holländischen Enschede gezeigt (Physical Review Letters, Bd. 89, Ausgabe 11, Artikel # 203002, 11.11.2002). Stoffe, die Leuchtmoleküle abschalten können, sind in der Forschung heiß begehrt. Diese Fluoreszenzlöscher können nämlich an Proteine oder andere Moleküle gekoppelt werden, deren Aufenthaltsort in der Zelle bestimmt werden soll. In der Zelle werden fluoreszierende Moleküle verteilt. Dort, wo es nicht leuchtet, befindet sich das gesuchte Molekül – mit angehängtem Fluoreszenzlöscher, der in der Umgebung das Licht ausmacht. Bisher wurden als Farbstofflöscher meist organische Moleküle benutzt. Diese verfügen oft aber selbst über eine gewisse Fluoreszenz und sind nicht photostabil, zerlegen sich also schnell. „Gold dagegen begründet eine neue Generation der Biomarker“, so Feldmann. „Denn es ist praktisch nicht zerstörbar und hat keine störende Eigenfluoreszenz.“

Überraschend für die Forscher war, dass selbst Goldnanopartikel mit einem Durchmesser von nur zwei Nanometern, also zwei millionstel Millimetern, fluoreszierende Moleküle zu 99,8 Prozent abschalten können. „Das ist etwa zehn Mal effizienter als die Wirkung der organischen Fluoreszenzlöscher“, berichtet Klar. „Dass bereits so kleine Goldpartikel eine derart hohe Effizienz besitzen, ist von großer Bedeutung für die biologische und medizinische Forschung.“ Die Münchner Forscher haben auch größere Goldpartikel mit bis zu 60 Nanometer Durchmesser untersucht und damit erstmals eine Studie über die Größenabhängigkeit des Löscheffekts von Goldpartikeln durchgeführt.

Partikel aus Gold können Fluoreszenz so effektiv löschen, weil sie den Farbstoffmolekülen Energie entziehen, so dass diese nicht mehr leuchten können – das ist der so genannte resonante Energietransfer. Daneben aber senkt schon die Präsenz des Goldes die Leuchtfähigkeit der fluoreszierenden Moleküle. Die „strahlende Rate“ erniedrigt sich. Erst das Zusammenwirken beider Effekte ermöglicht die ungemein effiziente Unterdrückung der Fluoreszenz durch Gold.

Die herausragende Löschkraft des Goldes hat noch einen weiteren Effekt. „Der Energieraub findet nur statt, wenn die beiden Partikel nicht mehr als ein paar Nanometer voneinander entfernt sind“, so Dulkeith. „Aus der Stärke des Leuchtkraftverlustes kann man dann rückwirkend sehr exakt die Positionen der gesuchten Moleküle berechnen.“

Ansprechpartner:

Dr. Thomas Klar
Lehrstuhl für Photonik und Optoelektronik
Sektion Physik und CeNS
Tel: 089-2180-3443
Fax: 089-2180-3441
E-Mail: thomas.klar@physik.uni-muenchen.de

Media Contact

Cornelia Glees-zur Bonsen idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer