Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum wachsen Pflanzen nach oben? Neue Faktoren und Konzepte in der Schwerkraftwahrnehmung

22.03.2001


Der internodiale Pulvinus der Maispflanzen. Stärkehaltige Amyloplasten kommen v.a. im Pulvinusgewebe vor. Die Krümmungsreaktion der Sproßachse erfolgt ausschließlich durch Elongation an der Unterseite des Pulvinus, die Internodien bleiben gerade.


Modell biochemischer Vorgänge während der gravitropen Reaktion von Mais und Hafer.


Pflanzen nehmen eine Vielzahl von physikalischen Reizen wahr. Auf die Stimulation reagieren sie mit Änderungen in der Wachstumsrate oder -richtung und mit Änderungen im Stoffwechsel. Seit einigen Jahren wird die Beteiligung von Inositol-haltigen Phospholipiden oder Phosphoinositiden an Signalleitungsprozessen in Pflanzen erforscht, die nach Stimulation durch Licht, osmotischen Stress, Verletzung oder Umorientierung erfolgen. Ähnlich den rapiden, Hormon-induzierten Signalleitungsprozessen tierischer Zellen werden auch in Pflanzen nach Stimulation Signalmoleküle produziert, die den physikalischen Reiz in ein intrazelluläres Signal übersetzen. Bislang wurde der Phosphoinositid-Stoffwechsel in Pflanzen hauptsächlich in einem zeitlichen Rahmen von Stunden untersucht. Dahingegen sind rapide biochemische Änderungen in pflanzlichen Geweben, die innerhalb von wenigen Sekunden auftreten, in nur wenigen Studien gezeigt worden. Zur Entdeckung eines der schnellsten pflanzlichen Wahrnehmungsprozesse hat unter anderem das Forschungsprojekt von Dr. Ingo Heilmann geführt. Es zeigt eine neue Funktion für das Signalmolekül Inositol 1,4,5-trisphosphat in der Vermittlung von direktionalem Wachstum bei Pflanzen an. Im Rahmen seiner Doktorarbeit unter der Leitung von Professor Dr. Claus Schnarrenberger (Institut für Biologie der FU Berlin; Pflanzenphysiologie) hat Dr. Ingo Heilmann unter anderem die Signalleitungsprozesse während der Schwerkraftwahrnehmung von Mais- und Haferpflanzen erforscht. Der experimentelle Teil der Doktorarbeit wurde bei Prof. Dr. Wendy Boss an der North Carolina State University durchgeführt.

Werden Pflanzen durch Winddruck, Regen oder experimentelle Gravistimulation aus ihrer vertikalen in eine horizontale Position gebracht, so richten sie sich durch differentielles Wachstum wieder in die Vertikale auf. Diese Reaktion erfolgt auch im Dunkeln, sie ist also nicht lichtabhängig. Das Absinken dichter Partikel, der stärkehaltigen Amyloplasten (Plastiden in pflanzlichen Zellen), in sensitiven Zellen steht einer weithin akzeptierten Theorie zufolge am Beginn der Schwerkraftwahrnehmung bei Pflanzen. Änderungen im Druck der Amyloplasten auf Membranzisternen oder Komponenten des Zytoskelettes rufen in den Zellen eine Kaskade biochemischer Signale hervor, die das anfängliche Signal verstärkt und im Gewebe ausbreitet. Über die Natur der biochemischen Signale, besonders in frühen Phasen der Kaskade, war bislang nichts bekannt.

Anders als in dikotylen (zweikeimblättrigen) Pflanzen, die eine graduelle Krümmung über weite Strecken der Sproßachse zeigen, um aus horizontaler Lage in die Vertikale zu wachsen, erfolgt in Mais und vielen anderen Gräsern die Krümmung ausschließlich in spezialisierten Geweben, den sogenannten "Pulvini". Die Sproßachse von Maispflanzen ist für die Untersuchung der gravitropen Krümmungsreaktion (weil sie durch den Schwerkraftvektor bedingt ist) aus zwei Gründen besonders geeignet: 1.) Sowohl die Wahrnehmung durch Amyloplasten als auch die Krümmungsreaktion selbst finden im Pulvinus statt. 2.) Es muß deshalb die Signalleitungskaskade, die Wahrnehmung und Reaktion verbindet, ebenfalls im Pulvinusgewebe vorliegen.

Durch die getrennte Analyse von oberen und unteren Hälften von Mais-Pulvini nach Gravistimulation konnte gezeigt werden, dass ein 5-facher Anstieg in der Konzentration von Inositol 1,4,5-trisphosphat (InsP3) in der unteren Hälfte des Pulvinus schon innerhalb weniger Sekunden nach Gravistimulation erfolgt. Die Schnelligkeit dieses Signals war überraschend, da die Pflanzen erst nach einer Stimulationsdauer von über zwei Stunden auf eine Krümmungsreaktion festgelegt sind. Pflanzen, die für weniger als die Präsentationszeit von zwei Stunden gravistimuliert werden, zeigen keine Krümmungsreaktion. Eine Analyse der InsP3-Konzentrationen im Pulvinusgewebe über mehrere Stunden zeigte, dass der InsP3-Spiegel in der unteren Pulvinushälfte gravistimulierter Pflanzen vor dem Einsetzen der Krümmungsreaktion bis zu 5-fach ansteigt. Dieser Anstieg korreliert zur Dauer der Gravistimulation: je länger die Stimulusdauer, desto größer der Anstieg in InsP3 in der unteren Pulvinushälfte. Bei Unterbrechung der Gravistimulation sinkt der InsP3-Spiegel wieder auf den basalen Wert zurück. Diese Ergebnisse weisen auf eine Funktion von InsP3 als Positionssignal im Pulvinusgewebe hin, was über die bisher bekannte Funktion als kurzlebiger "second messenger" hinausgeht. Ähnliche Prozesse kommen während der Embryonalentwicklung beim Krallenfrosch oder beim Zebrafisch vor, waren aber bislang nicht von Pflanzen bekannt. Pharmakologische Unterdrückung der InsP3-Bildung verhindert in Haferpflanzen das für die gravitrope Reaktion nötige Positionssignal.

Niedrige Temperaturen (4° C) unterdrücken in vielen Pflanzen die Krümmungsreaktion nach Gravistimulation. Werden die Pflanzen jedoch bei 4° C stimuliert, in die Vertikale gebracht und dann bei Raumtemperatur gehalten, zeigen sie in vielen Fällen gravitropes Wachstum entsprechend dem bei 4° C wahrgenommenen Reiz. Dieser "Gedächtnis"-Effekt ist seit langem bekannt, konnte jedoch bislang nicht befriedigend erklärt werden. Die Untersuchung von InsP3-Signalen in Haferpflanzen, die bei verschiedenen Temperaturen gravistimuliert wurden, zeigte, dass bei 4° C die InsP3-Signale fast unverändert erzeugt werden, während andere Faktoren, z.B. die Verteilung des Phytohormones Auxin, nicht stattfinden. InsP3 könnte daher ein Bestandteil des positionalen "Gedächtnisses" der Pflanzen sein.

Während der Schwerkraftwahrnehmung können im Maispulvinus also rapide und langfristige Änderungen im InsP3-Spiegel unterschieden werden. Dieses Muster konnte auch in Zusammenarbeit mit Prof. Dr. Peter Kaufman (University of Michigan) in gravistimulierten Haferpflanzen bestätigt werden. Wachstum ist ein "kostenintensiver" Prozess für eine Pflanze und nicht umkehrbar. Die aufgewendete Energie kann nicht wiedergewonnen werden. Zwei-phasige InsP3-Signale könnten Teil eines Mechanismus’ sein, der den Pflanzen ermöglicht zu "entscheiden", ob ein Stimulus lange genug vorliegt, um eine Krümmungsreaktion zu rechtfertigen. Mit Einsetzen der Gravistimulation werden Oszillationen (d.h. Folgen von vorübergehenden Anstiegen) der InsP3-Konzentration in Gang gesetzt, die für die Länge der Präsentationszeit andauern, und die eventuell an der Messung einer Mindestdauer der Stimuation beteiligt sind. Nach Überschreiten der Präsentationszeit erfolgt ein gradueller Anstieg in der InsP3-Konzentration, während dessen die Intensität der Krümmungsreaktion noch der Stimulationsdauer angepasst werden kann. Sobald die Pflanzen mit dem differentiellen Krümmungswachstum beginnen, fällt interessanterweise der InsP3-Spiegel auf den Basallevel zurück, auch wenn die Stimulation noch andauert. Die Pflanzen sind zu diesem Zeitpunkt irreversibel auf eine Wachstumsreaktion festgelegt.

Die beschriebenen Ergebnisse wurden beim Jahrestreffen der "American Association for the Advancement of Science" (AAAS) präsentiert und in folgenden Fachzeitschriften publiziert:
- I.Y. Perera, I. Heilmann, W.F. Boss (1999) "Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini", in: Proc Natl Acad Sci USA 96, S. 5838 ff.


- I.Y. Perera, I. Heilmann, S.C. Chang, W.F. Boss, P.B. Kaufman (2001) "A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini" in: Plant Physiology 125: S. 1499 ff.

Weitere Informationen erteilt Ihnen gerne:
Dr. Ingo Heilmann, Department of Botany, North Carolina State University, Box 7612, Raleigh, NC 27695-7612, USA, Tel.: 001 / 919 / 515-6043, E-Mail: ingo_heilmann@ncsu.edu
Univ.-Prof. Dr. Claus Schnarrenberger und Dr. habil. Wolfgang Gross, Institut für Biologie der Freien Universität Berlin (Pflanzenphysiologie), Königin-Luise-Str. 12-16, 14195 Berlin-Dahlem, Tel.: 030 / 838-53123, E-Mails: schnarre@zedat.fu-berlin.de,galdi@zedat.fu-berlin.de


Weitere Informationen finden Sie im WWW:

Ilka Seer | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltwasserkorallen: Versauerung schadet, Wärme hilft
27.04.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie