Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Helfer für den Umweltschutz

29.10.2002


Grundlagenforscher bereiten Boden für Sanierungshelfer / Neueste Ausgabe der MaxPlanckForschung erschienen


Abb. 1: Arabidopsis halleri, eine nahe Verwandte der vollständig sequenzierten Ackerschmalwand (Arabidopsis thaliana) ist von Natur aus auf Lebensräume eingestellt, vor denen die meisten anderen Pflanzen kapitulieren müssen: So gedeiht sie zum Beispiel auf einem ehemaligen Minengelände im Harz, das mit Cadmium verseucht ist.

Foto: MaxPlanckForschung


Abb. 2: Hefezellen unter dem Mikroskop: In die Vakuolenmembran der Zelle rechts unten sind pflanzliche, mit einem grün fluoreszierenden Molekül gekoppelte Zink-Transportproteine eingebaut.

Foto: MaxPlanckForschung



Um schwermetallverseuchte Flächen zu entgiften, müssen Böden abgetragen und technisch aufwändig gereinigt werden. Zukünftig könnte es vielleicht genügen, einfach Pflanzen auszusäen, die in der Lage sind, Schwermetalle aufzunehmen und anzureichern. Ute Krämer, Leiterin einer vom BMBF geförderten und am Max-Planck-Institut für molekulare Pflanzenphysiologie angesiedelten BioFuture-Nachwuchsgruppe, versucht, das biochemische Netzwerk zu entschlüsseln, das es Pflanzen erlaubt, auf stark metallhaltigen Böden zu gedeihen und teilweise bis zu fünf Prozent ihres Trockengewichts an Metallen anzulegen. Welche Hürden für einen biotechnologisch erfolgreichen Einsatz dieser "Metallakkumulatoren" noch zu überwinden sind, darüber berichtet die MaxPlanckForschung in ihrer neuesten Ausgabe.



Mit Chemikalien verseuchte Böden werden in Industriestaaten zu einem immer größeren gesundheitlichen und finanziellen Problem. Ein Paradebeispiel dafür lieferte unlängst die Sanierung des Geländes der ehemaligen Farbenfabrik Vossen im hessischen Bad Homburg: Im Jahr 1981 hatte die Stadt das Betriebsgelände zur Bebauung mit Wohnhäusern freigegeben. Bei den darauffolgenden Ausschachtungsarbeiten kam eine geradezu beispiellose Umweltverschmutzung ans Licht - jahrzehntelang waren Farbreste und andere chemische Abfälle auf dem Betriebsgelände "entsorgt" worden. Der Boden war stark verseucht, unter anderem mit Blei, Chrom, Zink und Dioxin. Mittlerweile mussten fast 32.000 Tonnen kontaminierten Bodens entsorgt werden. Die Sanierungskosten belaufen sich auf mehr als neun Millionen Euro. Im Herbst 2002 wurde die Sanierung abgeschlossen. Wer bezahlt das alles? Diese Frage ist noch lange nicht geklärt; damit werden sich wohl die Gerichte beschäftigen müssen.

Experten suchen schon seit geraumer Zeit nach neuen Ansätzen, um solche Umweltsünden in den Griff zu bekommen. So arbeiten eine Reihe von Verfahren mit Bakterien, die ohnehin in verunreinigten Böden leben und dort bestimmte Schadstoffe abbauen. Mikroorganismen, die Schwermetalle aufnehmen und danach im Boden bleiben, entfernen diese jedoch nicht - im Gegensatz zu organischen Giften wie Dioxin sind Schwermetalle nicht abbaubar. Eine vergleichsweise einfache und preiswerte Reinigung belasteter Böden könnte aber durch den Anbau bestimmter Pflanzensorten erfolgen: Für ihr Wachstum benötigen sie eine ganze Reihe von Nährstoffen - darunter auch Substanzen, die in höheren Konzentrationen für den Menschen giftig sind.

Es gibt schätzungsweise an die 400 Pflanzenarten, die auf stark metallhaltigen Böden gedeihen. Sie nehmen nicht nur Metalle auf, sondern können diese sogar in Stiel und Blättern anreichern, ohne dabei Schaden zu nehmen. Die Pflanzen würden mit den Metallen geerntet und entsorgt. Bei jeder zweiten Altlast, so die Schätzung von Branchenkennern, ließe sich mit solchen Pflanzen ein Teil der Schadstoffe aus dem Boden holen. Die Experten sprechen von "Phytoremediation". Mit ausgesuchten Arten könnte man beispielsweise Ackerflächen reinigen, die jahrelang mit schwermetallhaltigem Klärschlamm gedüngt wurden.

Die Grundlagen für einen solchen potenziellen biotechnologischen Einsatz erarbeiten die Forscher um Ute Krämer am Max-Planck-Institut für molekulare Pflanzenphysiologie in Golm. Denn zum jetzigen Zeitpunkt spielt die Phytoremediation bei der Bodensanierung - zumindest in Deutschland - noch keine Rolle. Auf der Suche nach den Genen, die für die Metalltoleranz bestimmter Pflanzen entscheidend sein könnten, haben Ute Krämer und ihr Team zunächst einmal die Proteinbaupläne abgefangen, die aus den Zellkernen ihres Untersuchungsobjekts (der Pflanze Arabidopsis halleri) an die Proteinfabriken der Zelle, die Ribosomen, geschickt werden. Die in diesen so genannten Boten-RNAs (mRNA, engl. messengerRNA) enthaltenen genetischen Informationen haben die Wissenschaftler in Hefezellen eingebracht. Diejenigen Hefekolonien, die anschließend in der Lage waren, auch hohen Zinkkonzentrationen im Nährmedium standzuhalten, enthielten offenbar genetische Informationen, die für eine Metalltoleranz wichtig waren. Sie wurden einer genaueren Analyse unterzogen.

Dabei profitieren die Golmer Forscher von der im Jahr 2000 abgeschlossenen vollständigen Entschlüsselung des Erbguts von Arabidopsis thaliana, der genetischen Modellpflanze schlechthin. Arabidopsis halleri ist mit dieser Art sehr nah verwandt; daher kann die hohe Ähnlichkeit der Erbinformation als Ausgangspunkt für eine ganze Reihe von Experimenten genutzt werden. Die Forscher wollen vor allem wissen, welche Proteine der Organismus in hohen Mengen benötigt - entsprechend viele "Blueprints" (mRNA) sind erforderlich - und welche Proteine der Organismus weniger braucht. Die Menge an Boten-RNA in der Zelle lässt sich anhand von Mikrochips feststellen, die im Vorfeld mit den etwa 24.000 Genen von Arabidopsis thaliana bestückt wurden. Das Messsignal fällt stärker oder schwächer aus, je nachdem, ob viel oder weniger mRNA an den Chip bindet. Im Vergleich zwischen Arabidopsis thaliana und der "Metallpflanze" Arabidopsis halleri offenbaren sich hierbei deutliche Unterschiede. Und dies wiederum erlaubt die Identifikation einer ganzen Reihe von Gen-Kandidaten, deren genaue Funktionen im Netzwerk des besonderen Metallhaushalts von Arabidopsis halleri nun untersucht werden.

Die Golmer Forscher stehen erst am Anfang ihrer Arbeit. Den aktuellen Stand auf diesem Gebiet haben Ute Krämer und ihre Kollegen Stephan Clemens vom Leibniz-Institut für Pflanzenbiochemie in Halle und Michael Palmgren von der Universität in Kopenhagen, Dänemark, kürzlich in einem Review-Artikel in TRENDS in Plant Science zusammengefasst

Weitere Informationen erhalten Sie von:

Dr. Ute Krämer
Arbeitsgruppe Metal Homeostasis
Max-Planck-Institut für molekulare Pflanzenphysiologie
Am Mühlenberg 1, 14476 Golm
Tel.: 0331 - 567 - 8357
Fax: 0331 - 567 - 89 8357
E-Mail: kraemer@mpimp-golm.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimp-golm.mpg.de/leute/kraemer.html
http://www.mpimp-golm.mpg.de/kraemer/index-e.html
http://www.mpimp-golm.mpg.de/

Weitere Berichte zu: Arabidopsis Metall Schadstoff Schwermetalle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise