Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beschichtung aus Kohlenstoff erhöht Bioverträglichkeit medizinischer Implantate

24.10.2002


Weit dünner als ein Haar, und doch eine wirksame Barriere gegen Zellgifte: Hauchdünne Kohlenstoffschichten können verhindern, dass Giftstoffe aus medizinischen Implantaten oder Kunststoff-Petrischalen an die Oberfläche gelangen.


Wissenschaftler aus Rheinbreitbach und Kaiserslautern stellen so genannte "amorphe Kohlenstoffbeschichtungen" her, mit denen sich beispielsweise Gefäßstützen oder Kulturschalen für Stammzellen "veredeln" lassen. Um zu testen, inwieweit die Beschichtungen die Erwartungen erfüllen, kooperieren sie mit Zellbiologen der Universität Bonn.

Kardiologen weiten verengte Herzkranzgefäße heute meist mit einem Ballonkatheter und stützen die Ader danach mit einem Metallröhrchen, einem Stent. Um diesen Fremdkörper vor dem Immunsystem "zu verstecken", suchen die Mediziner nach Materialien, die möglichst schnell von Zellen der Gefäßinnenwand bewachsen werden. Die Firma NTTF - new technologies in thin films - und das Institut für Dünnschichttechnologie in Kaiserslautern stellen ultradünne Beschichtungen aus Kohlenstoff her, mit denen sich Stents und andere medizinische Implantate "veredeln" lassen. Bonner Zellbiologen untersuchen dann, wie "bioverträglich" die beschichteten Materialien sind: Wie gut wachsen Hautzellen auf den "veredelten" Stents? Und entwickeln sie sich so, wie sie es auch im Körper tun würden?


Obwohl lediglich etwa 35 millionstel Millimeter dick, verhindern die Beschichtungen aus Kohlenstoff, dass Substanzen aus dem beschichteten Material an die Oberfläche gelangen - beispielsweise Metallionen oder Weichmacher aus Kunststoffen, die für Zellen giftig sind. Außerdem reagieren sie nicht mit anderen Substanzen, sind flexibel, diamantähnlich hart und lassen sich auf beliebige Werkstoffe aufdampfen. Da dies schon bei Temperaturen unter 50 Grad gelingt, kann man auch Kunststoffe beschichten.

Die Bonner Zellforscher testeten verschiedene beschichtete und unbeschichtete Materialien, inwieweit sich auf ihnen menschliche Epithelzellen, z.B. Zellen der Haut, vermehren und entwickeln können. Beschichtete Stents waren beispielsweise schon nach kurzer Zeit gleichmäßig bewachsen, unbeschichtete dagegen kaum. Die niedrige Temperatur bei der Herstellung der Beschichtung macht es zudem möglich, auch Zellkulturgefäße aus Plastik mit Dünnschichten zu versiegeln. Zellkulturen sind sehr empfindlich; kleinste Mengen Weichmacher oder andere Substanzen können ihre Entwicklung stören und verhindern, dass sie sich teilen und vermehren. Bislang verwenden Zellforscher für ihre Versuche teure Gefäße aus Spezial-Kunststoff. Beschichteter Kunststoff, so zeigen erste Tests, ist eine kostengünstige Alternative - in den Kulturschalen wuchsen die menschlichen Zellen ganz normal heran. Inzwischen ist das Verfahren so weit gereift, dass es zum Patent angemeldet wurde.

Die Wissenschaftler werden ihre Ergebnisse vom 18. bis zum 30. November während einer Ausstellung im Düsseldorfer Landtag präsentieren. Weitere Informationen: www.diedrittemission.nrw.de

Ansprechpartner:

Professor Dr. Volker Herzog
Institut für Zellbiologie der Universität Bonn
Telefon: 0228/73-5301
E-Mail: herzog@uni-bonn.de

Dr. Udo Grabowy, NTTF
Tel.: 02224/968881
E-Mail: udo.grabowy@nttf.de

Frank Luerweg | idw
Weitere Informationen:
http://www.diedrittemission.nrw.de

Weitere Berichte zu: Beschichtung Implantat Kohlenstoff Kunststoff Stent

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Workshop »Emissionsarme Bauprodukte und Wohngesundheit«

28.03.2017 | Seminare Workshops

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops