Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation durch Zellwände: Synthetisches Rezeptorsystem ahmt biologische Signalübertragung nach

16.10.2002


Lebende Organismen sind aus einzelnen Zellen aufgebaut, die durch eine Lipid-Membran von ihrer Umgebung abgetrennt sind. Für ein sinnvolles Miteinander müssen sich diese Zellen untereinander verständigen. Hormone beispielsweise sind Botenstoffe, die Informationen innerhalb des Körpers weiterleiten



Dabei ist es nicht unbedingt notwendig, dass die Botenstoffe in das Zellinnere gelangen, um ihre Botschaft "abzugeben", die Kommunikation kann auch - sozusagen wie ein Klopfzeichen - durch die Zellwand erfolgen.



Einem britischen Forschungsteam um Christopher A. Hunter und Nicholas H. Williams von der Universität Sheffield ist es gelungen, ein solches Signalübertragungssystem mit relativ einfachen chemischen Verbindungen nachzubauen. Der künstliche Signalüberträger funktioniert nach folgendem Prinzip: Synthetische Rezeptoren werden in die Membran von künstlichen Vesikeln eingebettet. Ein Vesikel ist ein membranumschlossenes Flüssigkeitsbläschen. Die Rezeptoren bestehen aus stäbchenförmigen Molekülen mit einer reaktiven Kopfgruppe an beiden Enden, die aus der Membran herausragen. Bei der Hälfte der Rezeptoren ist an die ins Vesikelinnere weisende Kopfgruppe ein kleines Farbstoff-Molekül angekoppelt. Nun wird der Botenstoff zugeführt. Er bewirkt, dass die auf der Vesikeloberfläche befindlichen Kopfgruppen von je zwei Rezeptormolekülen miteinander reagieren und diese so zu einem Dimer verknüpfen. Dadurch kommen sich auch die beiden Kopfgruppen der Rezeptorpaare auf der Innenseite der Vesikel sehr nahe - nah genug, um nun ihrerseits miteinander reagieren zu können. Unter den Bedingungen im Vesikelinneren kann jedoch nur eine Kopplungsreaktion zwischen einer Kopfgruppe mit und einer Kopfgruppe ohne Farbstoff-Molekül stattfinden. Dabei wird der Farbstoff abgespalten und ins Vesikelinnere freigesetzt - als Antwort des Rezeptorsystems auf den äußeren Botenstoff. Dies könnte nun prinzipiell weitere Schritte einer Signalkaskade in Gang setzen.

Das Prinzip der auf ihre Umgebung reagierenden Vesikel könnte genutzt werden, um "intelligente" Transportsysteme für pharmakologische Wirkstoffe zu entwickeln. So könnte beispielsweise die inaktive Vorstufe eines Medikamentes in Vesikel verpackt injiziert werden. Ein nur im Zielorgan oder nur in krankem Gewebe vorkommender Botenstoff könnte dann eine katalytische Reaktion innerhalb der Vesikel auslösen, die dann erst die Vorstufe zum aktiven Wirkstoff umsetzt. Beim Freisetzen des Vesikelinhalts erhalten gesunde Zellen entsprechend nur die inaktive Substanz und werden nicht geschädigt, kranke Zellen dagegen erhalten das wirksame Medikament.

Kontakt:
Prof. C. A. Hunter,
Dr. N. H. Williams
Centre for Chemical Biology
Krebs Institute for Biomolecular Science
Department of Chemistry
University of Sheffield
Sheffield S3 7HF UK
E-mail: C.Hunter@Sheffield.ac.uk
N.H.Williams@Sheffield.ac.uk

Dr. Kurt Begitt | idw

Weitere Berichte zu: Botenstoff Rezeptor Rezeptorsystem Vesikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften