Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsmelder für Einzelmoleküle

07.10.2002


Göttinger Max-Planck-Wissenschaftler präsentieren hochsensitiven Protein-Test mit Anwendungspotential in der biomedizinischen Forschung und Wirkstoffentwicklung


Einzelne Moleküle sichtbar zu machen ist heute keine Utopie mehr. Optische Verfahren auf Basis der Fluoreszenzspektroskopie erlauben es bereits, Dynamik und Wechselwirkungen winzigster Substanzmengen in Lösung, aber auch in lebenden Zellen zu untersuchen. Wissenschaftlern um Petra Schwille am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es jetzt gelungen, eine derartige Methode so zu verfeinern, dass bereits geringste Mengen von Biomolekülen, in diesem speziellen Fall Enzyme, auf ihre funktionalen Eigenschaften analysiert werden können (Proceedings of the National Academy of Sciences of the United States of America, PNAS, 17. Dezember 2002). Damit ist der Wunsch vieler Forscher, die Interaktionen einzelner Moleküle in lebenden Zellen direkt beobachten zu können, in greifbare Nähe gerückt.

Fluoreszenzspektroskopische Verfahren zur Charakterisierung der physikalisch-chemischen Eigenschaften einzelner Moleküle haben inzwischen weite Verbreitung gefunden - dank leistungsstarker Laser und hochempfindlicher Detektoren einerseits sowie geeigneter Fluoreszenz-Farbstoffe andererseits. In der biochemischen und molekularbiologischen Forschung geht es heute darum, die Dynamik von Proteinen und Nukleinsäuren - möglichst auf der Ebene einzelner Moleküle - zu untersuchen. Auf der Wunschliste ganz oben steht bei den Wissenschaftlern seit langem die Möglichkeit, molekulare Wechselwirkungen in der lebenden Zelle verfolgen zu können.


Eine Göttinger Wissenschaftlergruppe hat jetzt unter Leitung von Dr. Petra Schwille einen neuen fluoreszenzbasierten Enzym-Test, ein so genanntes Protease-Assay, vorgestellt. Dieser Test erlaubt es, enzymatische Abbaureaktionen in Echtzeit bei minimalsten Enzym- und Substratkonzentrationen in Größenordnungen von wenigen Mikro- und Nanomol pro Liter zu analysieren. Ein Mol ist die Stoffmenge einer Substanz, die aus ebenso vielen Teilen besteht, wie 0,012 kg des Nuklids Kohlenstoff-12 (12 C) Atome enthält; ein Mikromol entspricht einem Millionstel, ein Nanomol einem Milliardstel Mol.


Abb. 1 links: Grundprinzip des Enzym-Tests: Das intakte Eiweißbruchstück zeigt unter Laserbestrahlung eine relativ hohe Effizienz des strahlungslosen Energietransfers (FRET) vom grünen Farbstoff (rsGFP) auf den roten Farbstoff (DsRed). Die Diffusionsbewegungen der Farbstoffe in wässriger Umgebung sind stark gekoppelt. Bei Durchtrennung einer spezifischen Bindung durch ein Enzym (hier: TEV-Protease) trennen sich die Farbstoffe, der FRET wird unterbunden und eine gemeinsame Diffusion der Spaltprodukte ist nicht länger zu beobachten.
Abb. 1 rechts: Quantitative Analyse der enzymatischen Aktivität: Die FRET-Effizienz kann anhand der Photonen-Emissionsraten pro Molekül (rechts oben) verfolgt werden. Der Anteil gemeinsam diffundierender Moleküle ist aus der Amplitude der Korrelationskurven (große Abb.) zu bestimmen.

Grafik: Max-Planck-Institut für biophysikalische Chemie


Die Grundidee für den neuen Test besteht darin, Eiweißbruchstücke (Peptide) an ihren beiden Enden mit zwei spektral verschiedenen Farbstoffen zu markieren. Dafür benutzten die Max-Planck-Forscher klonierbare Farbstoffe, so genannte "fluoreszente Proteine" - eine Mutante des GFP-Proteins im grünen und das nah verwandte Protein DsRed im roten Spektralbereich. Diese Farbstoffe haben den großen Vorteil, dass auf ihnen beruhende Test-Assays auch für intrazelluläre Messungen verwendet werden können, ohne dass man das markierte Substrat nachträglich in die Zelle einschleusen muss.

Die durch das Enzym zerschnittenen und die ungeschnittenen Substratmoleküle kann man zunächst - makroskopisch - aufgrund der enzymatisch bedingten Änderung des Fluoreszenz-Resonanz-Energietransfers (FRET) zwischen den beiden Farbstoffen unterscheiden. Dieser Energietransfer basiert darauf, dass bei großer räumlicher Nähe der beiden Farbstoffe - typischerweise im Bereich unterhalb von 60 Angström - ein strahlungsloser Energietransfer zwischen dem direkt angeregten grünen und dem nicht direkt angeregten roten Farbstoff erfolgt. Der Abstand zwischen beiden Markierungen wird im Emissionssignal farblich kodiert: Grüne Emission steht für großen und rote Emission für kleinen Abstand. Werden also die Peptide in zwei Fragmente zerlegt, tritt auch eine räumliche Trennung der Farbstoffe ein, was zu einer Abnahme des Energietransfers (FRET) führt. Die Peptidlösung ändert also unter Bestrahlung ihre "Farbe" bzw. ihr Fluoreszenzspektrum.


Abb. 2: Prinzip der simultanen Zweiphotonen-Anregung spektral separierbarer Farbstoffe: Hierbei werden durch gepulste Hochleistungslaser hohe lokale Photonendichten erzeugt, die es erlauben, Fluorophore mit zwei "gleichzeitig" ankommenden Photonen der halben Energie (der doppelten Wellenlänge) anzuregen. Aufgrund photophysikalischer Eigenheiten der gewählten Farbstoffe ist es in diesem Zweiphotonen-Modus darüber hinaus möglich, mit z.B. infrarotem Licht grüne und rote Moleküle gleichermaßen zum Leuchten anzuregen. Dies vereinfacht mehrfarbige Anwendungen, insbesondere in der Zelle, erheblich.
Grafik: Max-Planck-Institut für biophysikalische Chemie


Die FRET-Methode wird in der Fluoreszenzmikroskopie bereits vielfach eingesetzt, um molekulare Interaktionen, wie chemische Bindung oder Dissoziation, aber auch Strukturveränderungen, aufzuklären. Allerdings ist diese Methode erheblich dadurch limitiert, dass oberhalb eines bestimmten Abstandes zwischen den beiden Farbstoffen keine effiziente Energieübertragung mehr stattfinden kann. Dann kann man eine Interaktion der markierten Moleküle (z.B. großer Proteine) nur feststellen, wenn die Farbstoffe zuvor in der unmittelbaren Umgebung der Bindungsstelle angebracht wurden. Das aber ist oftmals biologisch nicht sinnvoll, da dann die Gefahr besteht, dass sich die Eigenschaften der speziellen chemischen Bindung durch den Farbstoff signifikant verändern.

Vor diesem Hintergrund haben die Göttinger Forscher bereits 1997 eine neue fluoreszenzbasierende Methode, die Fluoreszenz-Kreuzkorrelations-Spektroskopie (FCCS) entwickelt. Die FCCS ist vom Konzept her einfacher und selektiver als FRET. Sie funktioniert aber nur dann, wenn die Messapparatur sensitiv genug ist, einzelne fluoreszenzmarkierte Moleküle zu detektieren. Bei der FCCS wird im Grunde nur die Bewegung der Moleküle durch ein winziges Probenvolumen, den beugungslimitierten Fokus eines Laserstrahls, verfolgt. Diffundieren rote und grüne Farbstoffe aufgrund der Brown’schen Molekularbewegung gemeinsam durch das Volumen, müssen sie aneinander gekoppelt sein. Hingegen bewegen sich nicht miteinander gekoppelte Moleküle, wie z.B. die Fragmente des geschnittenen Substrats, voneinander unabhängig. Diese Interaktionen können gemessen und quantifiziert werden, indem man einfach die Lichtblitze der beiden Farbstoffe in einem roten und einem grünen Messsignal aufnimmt und sie daraufhin analysiert, ob sie zusammen oder getrennt aufgetreten sind.

Die relative Häufigkeit der gleichzeitig auftauchenden koinzidenten Lichtblitze kann durch die Kreuzkorrelations-Analyse exakt bewertet werden. Als technische Vorbedingung für die Kreuzkorrelations-Spektroskopie müssen beide Farbmarkierungen in etwa gleich effizient angeregt werden. Das kann man bei einem großen spektralen Abstand dadurch erreichen, dass zwei Anregungslaserstrahlen unterschiedlicher Frequenz (z.B. rot und grün) im Messfokus überlagert werden. Eine solche optische Anordnung ist allerdings recht störanfällig. Zudem verkomplizieren unterschiedliche Brechungsverhältnisse und übliche Linsenfehler, wie zum Beispiel die chromatische Aberration, eine vollständige Überlappung der verschiedenfarbigen Fokalvolumina.

Um dieses Problem zu umgehen, machten sich die Max-Planck-Forscher einen photophysikalischen "Trick" zunutze: Mit Hilfe eines leistungsstarken Infrarotlasers regten sie die Farbstoffe nicht an ihrem Anregungsmaximum, sondern bei etwa der doppelten Wellenlänge an. Diese so genannte "Zwei-Photonen-Anregung" erlaubt es, spektral weit auseinanderliegende Farbstoffe mit derselben Infrarot-Wellenlänge zu adressieren, so dass ein einziger Laserstrahl ausreicht, um eine gemeinsame Anregung zu erreichen. Durch diesen Trick vereinfacht sich die Messapparatur erheblich und ist jetzt auch für zelluläre Anwendungen geeignet, da das Infrarot-Licht weniger Streuung und Autofluoreszenz in der Zelle hervorruft und es ermöglicht, tiefer ins Gewebe hineinzuschauen.

Die erfolgreiche Anwendung der Zwei-Photonen-FCCS unter Zuhilfenahme klonierbarer Farbstoffe ist ein wichtiger methodischer Durchbruch: In Zukunft kann diese Technik für die Untersuchung lebender Zellen genutzt werden. Doch das Verfahren ist nicht darauf begrenzt, die enzymatische Spaltung von Proteinen zu verfolgen. Mit FCCS kann auch der umgekehrte Prozess, die molekulare Assoziation verschieden markierter Partner in minimalsten Konzentrationen studiert werden. Petra Schwille, Leiterin der Forschergruppe am Max-Planck-Institut für biophysikalische Chemie, sagt dazu: "Mit unserem Messprinzip ist eines der Hauptziele der biophysikalischen Chemie, Interaktionen von Molekülen in lebenden Zellen direkt und quantitativ zu erfassen, in greifbare Nähe gerückt. Inzwischen konnten wir erste intrazelluläre Messungen von Protein-Protein-Assoziationsprozessen mit Zwei-Photonen-FCCS bereits erfolgreich durchführen" Dank ihrer hohen Selektivität und Sensitivität ist die Methode auch von grundlegender Bedeutung für die pharmakologische Wirkstoffentwicklung, in der Miniaturisierung und Automatisierung immer höhere Anforderungen an die Effizienz stellen, mit der molekulare Wechselwirkungen detektiert werden müssen.

Dr. Petra Schwille | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.gwdg.de/abteilungen/082/german.html

Weitere Berichte zu: FCCS FRET Farbstoff Interaktion Max-Planck-Institut Molekül Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie