Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsmelder für Einzelmoleküle

07.10.2002


Göttinger Max-Planck-Wissenschaftler präsentieren hochsensitiven Protein-Test mit Anwendungspotential in der biomedizinischen Forschung und Wirkstoffentwicklung


Einzelne Moleküle sichtbar zu machen ist heute keine Utopie mehr. Optische Verfahren auf Basis der Fluoreszenzspektroskopie erlauben es bereits, Dynamik und Wechselwirkungen winzigster Substanzmengen in Lösung, aber auch in lebenden Zellen zu untersuchen. Wissenschaftlern um Petra Schwille am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es jetzt gelungen, eine derartige Methode so zu verfeinern, dass bereits geringste Mengen von Biomolekülen, in diesem speziellen Fall Enzyme, auf ihre funktionalen Eigenschaften analysiert werden können (Proceedings of the National Academy of Sciences of the United States of America, PNAS, 17. Dezember 2002). Damit ist der Wunsch vieler Forscher, die Interaktionen einzelner Moleküle in lebenden Zellen direkt beobachten zu können, in greifbare Nähe gerückt.

Fluoreszenzspektroskopische Verfahren zur Charakterisierung der physikalisch-chemischen Eigenschaften einzelner Moleküle haben inzwischen weite Verbreitung gefunden - dank leistungsstarker Laser und hochempfindlicher Detektoren einerseits sowie geeigneter Fluoreszenz-Farbstoffe andererseits. In der biochemischen und molekularbiologischen Forschung geht es heute darum, die Dynamik von Proteinen und Nukleinsäuren - möglichst auf der Ebene einzelner Moleküle - zu untersuchen. Auf der Wunschliste ganz oben steht bei den Wissenschaftlern seit langem die Möglichkeit, molekulare Wechselwirkungen in der lebenden Zelle verfolgen zu können.


Eine Göttinger Wissenschaftlergruppe hat jetzt unter Leitung von Dr. Petra Schwille einen neuen fluoreszenzbasierten Enzym-Test, ein so genanntes Protease-Assay, vorgestellt. Dieser Test erlaubt es, enzymatische Abbaureaktionen in Echtzeit bei minimalsten Enzym- und Substratkonzentrationen in Größenordnungen von wenigen Mikro- und Nanomol pro Liter zu analysieren. Ein Mol ist die Stoffmenge einer Substanz, die aus ebenso vielen Teilen besteht, wie 0,012 kg des Nuklids Kohlenstoff-12 (12 C) Atome enthält; ein Mikromol entspricht einem Millionstel, ein Nanomol einem Milliardstel Mol.


Abb. 1 links: Grundprinzip des Enzym-Tests: Das intakte Eiweißbruchstück zeigt unter Laserbestrahlung eine relativ hohe Effizienz des strahlungslosen Energietransfers (FRET) vom grünen Farbstoff (rsGFP) auf den roten Farbstoff (DsRed). Die Diffusionsbewegungen der Farbstoffe in wässriger Umgebung sind stark gekoppelt. Bei Durchtrennung einer spezifischen Bindung durch ein Enzym (hier: TEV-Protease) trennen sich die Farbstoffe, der FRET wird unterbunden und eine gemeinsame Diffusion der Spaltprodukte ist nicht länger zu beobachten.
Abb. 1 rechts: Quantitative Analyse der enzymatischen Aktivität: Die FRET-Effizienz kann anhand der Photonen-Emissionsraten pro Molekül (rechts oben) verfolgt werden. Der Anteil gemeinsam diffundierender Moleküle ist aus der Amplitude der Korrelationskurven (große Abb.) zu bestimmen.

Grafik: Max-Planck-Institut für biophysikalische Chemie


Die Grundidee für den neuen Test besteht darin, Eiweißbruchstücke (Peptide) an ihren beiden Enden mit zwei spektral verschiedenen Farbstoffen zu markieren. Dafür benutzten die Max-Planck-Forscher klonierbare Farbstoffe, so genannte "fluoreszente Proteine" - eine Mutante des GFP-Proteins im grünen und das nah verwandte Protein DsRed im roten Spektralbereich. Diese Farbstoffe haben den großen Vorteil, dass auf ihnen beruhende Test-Assays auch für intrazelluläre Messungen verwendet werden können, ohne dass man das markierte Substrat nachträglich in die Zelle einschleusen muss.

Die durch das Enzym zerschnittenen und die ungeschnittenen Substratmoleküle kann man zunächst - makroskopisch - aufgrund der enzymatisch bedingten Änderung des Fluoreszenz-Resonanz-Energietransfers (FRET) zwischen den beiden Farbstoffen unterscheiden. Dieser Energietransfer basiert darauf, dass bei großer räumlicher Nähe der beiden Farbstoffe - typischerweise im Bereich unterhalb von 60 Angström - ein strahlungsloser Energietransfer zwischen dem direkt angeregten grünen und dem nicht direkt angeregten roten Farbstoff erfolgt. Der Abstand zwischen beiden Markierungen wird im Emissionssignal farblich kodiert: Grüne Emission steht für großen und rote Emission für kleinen Abstand. Werden also die Peptide in zwei Fragmente zerlegt, tritt auch eine räumliche Trennung der Farbstoffe ein, was zu einer Abnahme des Energietransfers (FRET) führt. Die Peptidlösung ändert also unter Bestrahlung ihre "Farbe" bzw. ihr Fluoreszenzspektrum.


Abb. 2: Prinzip der simultanen Zweiphotonen-Anregung spektral separierbarer Farbstoffe: Hierbei werden durch gepulste Hochleistungslaser hohe lokale Photonendichten erzeugt, die es erlauben, Fluorophore mit zwei "gleichzeitig" ankommenden Photonen der halben Energie (der doppelten Wellenlänge) anzuregen. Aufgrund photophysikalischer Eigenheiten der gewählten Farbstoffe ist es in diesem Zweiphotonen-Modus darüber hinaus möglich, mit z.B. infrarotem Licht grüne und rote Moleküle gleichermaßen zum Leuchten anzuregen. Dies vereinfacht mehrfarbige Anwendungen, insbesondere in der Zelle, erheblich.
Grafik: Max-Planck-Institut für biophysikalische Chemie


Die FRET-Methode wird in der Fluoreszenzmikroskopie bereits vielfach eingesetzt, um molekulare Interaktionen, wie chemische Bindung oder Dissoziation, aber auch Strukturveränderungen, aufzuklären. Allerdings ist diese Methode erheblich dadurch limitiert, dass oberhalb eines bestimmten Abstandes zwischen den beiden Farbstoffen keine effiziente Energieübertragung mehr stattfinden kann. Dann kann man eine Interaktion der markierten Moleküle (z.B. großer Proteine) nur feststellen, wenn die Farbstoffe zuvor in der unmittelbaren Umgebung der Bindungsstelle angebracht wurden. Das aber ist oftmals biologisch nicht sinnvoll, da dann die Gefahr besteht, dass sich die Eigenschaften der speziellen chemischen Bindung durch den Farbstoff signifikant verändern.

Vor diesem Hintergrund haben die Göttinger Forscher bereits 1997 eine neue fluoreszenzbasierende Methode, die Fluoreszenz-Kreuzkorrelations-Spektroskopie (FCCS) entwickelt. Die FCCS ist vom Konzept her einfacher und selektiver als FRET. Sie funktioniert aber nur dann, wenn die Messapparatur sensitiv genug ist, einzelne fluoreszenzmarkierte Moleküle zu detektieren. Bei der FCCS wird im Grunde nur die Bewegung der Moleküle durch ein winziges Probenvolumen, den beugungslimitierten Fokus eines Laserstrahls, verfolgt. Diffundieren rote und grüne Farbstoffe aufgrund der Brown’schen Molekularbewegung gemeinsam durch das Volumen, müssen sie aneinander gekoppelt sein. Hingegen bewegen sich nicht miteinander gekoppelte Moleküle, wie z.B. die Fragmente des geschnittenen Substrats, voneinander unabhängig. Diese Interaktionen können gemessen und quantifiziert werden, indem man einfach die Lichtblitze der beiden Farbstoffe in einem roten und einem grünen Messsignal aufnimmt und sie daraufhin analysiert, ob sie zusammen oder getrennt aufgetreten sind.

Die relative Häufigkeit der gleichzeitig auftauchenden koinzidenten Lichtblitze kann durch die Kreuzkorrelations-Analyse exakt bewertet werden. Als technische Vorbedingung für die Kreuzkorrelations-Spektroskopie müssen beide Farbmarkierungen in etwa gleich effizient angeregt werden. Das kann man bei einem großen spektralen Abstand dadurch erreichen, dass zwei Anregungslaserstrahlen unterschiedlicher Frequenz (z.B. rot und grün) im Messfokus überlagert werden. Eine solche optische Anordnung ist allerdings recht störanfällig. Zudem verkomplizieren unterschiedliche Brechungsverhältnisse und übliche Linsenfehler, wie zum Beispiel die chromatische Aberration, eine vollständige Überlappung der verschiedenfarbigen Fokalvolumina.

Um dieses Problem zu umgehen, machten sich die Max-Planck-Forscher einen photophysikalischen "Trick" zunutze: Mit Hilfe eines leistungsstarken Infrarotlasers regten sie die Farbstoffe nicht an ihrem Anregungsmaximum, sondern bei etwa der doppelten Wellenlänge an. Diese so genannte "Zwei-Photonen-Anregung" erlaubt es, spektral weit auseinanderliegende Farbstoffe mit derselben Infrarot-Wellenlänge zu adressieren, so dass ein einziger Laserstrahl ausreicht, um eine gemeinsame Anregung zu erreichen. Durch diesen Trick vereinfacht sich die Messapparatur erheblich und ist jetzt auch für zelluläre Anwendungen geeignet, da das Infrarot-Licht weniger Streuung und Autofluoreszenz in der Zelle hervorruft und es ermöglicht, tiefer ins Gewebe hineinzuschauen.

Die erfolgreiche Anwendung der Zwei-Photonen-FCCS unter Zuhilfenahme klonierbarer Farbstoffe ist ein wichtiger methodischer Durchbruch: In Zukunft kann diese Technik für die Untersuchung lebender Zellen genutzt werden. Doch das Verfahren ist nicht darauf begrenzt, die enzymatische Spaltung von Proteinen zu verfolgen. Mit FCCS kann auch der umgekehrte Prozess, die molekulare Assoziation verschieden markierter Partner in minimalsten Konzentrationen studiert werden. Petra Schwille, Leiterin der Forschergruppe am Max-Planck-Institut für biophysikalische Chemie, sagt dazu: "Mit unserem Messprinzip ist eines der Hauptziele der biophysikalischen Chemie, Interaktionen von Molekülen in lebenden Zellen direkt und quantitativ zu erfassen, in greifbare Nähe gerückt. Inzwischen konnten wir erste intrazelluläre Messungen von Protein-Protein-Assoziationsprozessen mit Zwei-Photonen-FCCS bereits erfolgreich durchführen" Dank ihrer hohen Selektivität und Sensitivität ist die Methode auch von grundlegender Bedeutung für die pharmakologische Wirkstoffentwicklung, in der Miniaturisierung und Automatisierung immer höhere Anforderungen an die Effizienz stellen, mit der molekulare Wechselwirkungen detektiert werden müssen.

Dr. Petra Schwille | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.gwdg.de/abteilungen/082/german.html

Weitere Berichte zu: FCCS FRET Farbstoff Interaktion Max-Planck-Institut Molekül Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops