Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomechanik: Wie Insekten an Oberflächen haften

15.11.2000


... mehr zu:
»Ameise »Biomechanik »Insekt »Ökologie
Manche Ameisen können sich mit so extremen Haftkräften an glatten Oberflächen festhalten wie sonst kein anderes Insekt - diesen Weltrekord hat Dr. Walter Federle vom Biozentrum der Universität Würzburg im Sommer
2000 publik gemacht. Nun will der Zoologe weiter erforschen, wie Insekten an Pflanzenoberflächen haften. Dafür hat er ein Stipendium von der Deutschen Forschungsgemeinschaft erhalten, das ihm die Leitung einer selbstständigen Nachwuchsgruppe ermöglicht.

Dr. Federle trachtet danach, Biomechanik und Ökologie miteinander zu verbinden. Sein Projekt hat zudem einen anwendungsbezogenen Hintergrund, denn die Strukturen und Funktionsprinzipien aus der Natur können als Vorbilder für innovative technische Entwicklungen dienen.

So ist der Laufvorgang bei Insekten zum Beispiel für die Entwicklung von beweglichen Robotern von großem Interesse. Hierbei ist neben der Steuerung der Motorik und der Reaktion auf die Außenwelt auch die Herstellung möglichst stabiler Reibungs- oder Haftkontakte auf verschiedenen Oberflächen wichtig. Was den letzten Punkt angeht, so können viele Insekten als "evolutionär optimierte Vergleichsmodelle" betrachtet werden: Sie besitzen eine Haftfähigkeit auf glatten und rauen Oberflächen sowie eine erstaunliche Fähigkeit, die Haftkraft nach Bedarf zu kontrollieren. Sie haben Haftorgane, die sich an die Oberflächenbeschaffenheit anpassen können, und nutzen zudem einen einfachen Bewegungsmechanismus.

Dr. Federle: "Keine technische Hafteinrichtung kann bislang vergleichbare Eigenschaften erreichen. Doch trotz dieses Potenzials sind die Bewegungsmechanismen, mit denen Insekten stabile, aber auch schnell wieder lösbare Haftverbindungen herstellen können, immer noch unbekannt." Daher will der Würzburger Wissenschaftler im ersten Teil seines Forschungsvorhabens den Haftmechanismus experimentell-physikalisch aufklären. Außerdem sollen Bau und Funktion der Insektenhaftorgane und deren Bewegungsmechanismen analysiert werden.

Für später ist vorgesehen, das Projekt in einen breiten ökologischen Kontext zu stellen. Dr. Federle will dann die Biomechanik von ausgewählten Insekten-Pflanzen-Wechselbeziehungen untersuchen. Denn die Fähigkeit von Insekten, auf glatten Oberflächen zu haften, stellt eine grundlegende Anpassung an das Leben auf Pflanzenoberflächen dar.

Viele Pflanzenarten verfügen über spezielle Oberflächen, die selbst für Insekten mit Haftorganen nur schwer begehbar sind. Sie sind entweder klebrig durch Drüsenhaarsekrete, schmierig durch flüssige Gleitfilme oder besonders rutschig durch einen Wachsüberzug. Mit letzterer Strategie arbeiten viele tropische Macaranga-Bäume, für die sich Walter Federle besonders interessiert. Nur ganz bestimmte Ameisen, die sich auf eine Partnerschaft mit diesen Bäumen spezialisiert haben, können sich mühelos auf den rutschigen Oberflächen festhalten und fortbewegen.

Dieses Beispiel zeigt laut Dr. Federle die Vorteile der Kombination von Biomechanik und Ökologie auf: Würde man die Biomechanik des Systems Macaranga-Wachsläufer nicht kennen, dann bliebe die Ökologie vieler Pflanzen- und Ameisenarten vollkommen unverständlich. Andererseits sei erst durch die ökologische Analyse ein neuartiger, biomechanischer Mechanismus von allgemeinem Interesse zugänglich geworden. Durch den Vergleich der Wachsläufer mit anderen Ameisen, denen diese Fähigkeit fehlt, könnten Erkenntnisse gewonnen werden, die einem rein biomechanisch arbeitenden Experimentator unzugänglich wären.

Die Deutsche Forschungsgemeinschaft (DFG) unterstützt die Arbeiten von Dr. Federle im Rahmen ihres Emmy Noether-Programms. Dieses soll laut DFG besonders qualifizierten Nachwuchswissenschaftlern einen Weg zur frühen wissenschaftlichen Selbstständigkeit eröffnen. Dazu wird es den Geförderten unmittelbar nach der Promotion ermöglicht, einen Forschungsaufenthalt im Ausland zu absolvieren und dann eine eigenverantwortliche Forschungstätigkeit im Inland zu beginnen, die mit der Leitung einer eigenen Nachwuchsgruppe verbunden ist. Letzten Endes sollen die jungen Wissenschaftler so die Voraussetzungen für eine Berufung als Hochschullehrer erlangen.

Weitere Informationen: Dr. Walter Federle, T (0931) 888-4318, Fax (0931) 888-4309, E-Mail: federle@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Ameise Biomechanik Insekt Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie