Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Submikroskopische Darstellung der Zellfunktionalität

19.09.2002


Biosensoren und Titansubstrate verbessern die Nahfeld-optische Analyse

In der Zellbiologie sind in den letzten Jahren riesige Datenpools (z.B. Etablierung von Genom- und Proteom-Katalogen) angelegt worden. Dieses Datenmaterial eignete sich zwar für eine Beschreibung der molekularen Komponenten einer Zelle, nicht aber für die ebenfalls sehr wichtige Darstellung der Zellfunktionalität. Direkte Einblicke in die Zellfunktionalität erfordern prinzipiell eine zeitaufgelöste zerstörungsfreie Analyse von Makromolekülen in lebenden Zellen, das heißt Technologien, die Nanostrukturen lokalisieren und identifizieren können. Die Lichtmikroskopie scheidet als Methode aus physikalischen Gründen aus. Das Auflösungsvermögen eines Lichtmikroskops ist in Abhängigkeit von der Ausdehnung des auf die Probe fokussierten Lichtstrahls begrenzt. Noch der kleinste Lichtfokus hat infolge von Beugungseffekten eine Ausdehnung, die mindestens einem Drittel der Wellenlänge entspricht (Abbe-Limit). Die Untersuchung von lebenden Biosystemen mittels Rasterelektronenmikroskopie ist grundsätzlich nicht praktikabel, weil sie nicht im flüssigen Medium anwendbar ist. Mit geeigneten Molekülen markierte Zellen konnten unter praktisch physiologischen Bedingungen mit der Laser-Rastermikroskopie lebend analysiert werden, wobei als Auflösungslimit 150nm gelten. Problematisch sind dabei vor allem die eingesetzten Marker, die das Biosystem beeinflussen.

Die Nahfeld-optische Analyse (NOA), seit rund zehn Jahren technisch realisiert als SNOM (Scanning Near-field Optical Microscopy), ist derzeit die einzige physikalische Methode, die prinzipiell alle für die Untersuchung der Zellfunktionalität wichtigen Bedingungen erfüllt, das heißt Topographie und optische Kontraste (optische Oberflächenunterschiede) zerstörungsfrei und zeitaufgelöst sowie höchstauflösend abbilden kann. Im SNOM erfolgt die Abbildung über einen sehr spitzen optischen Sensor. Dieser oszilliert in einer stabilen Resonanzfrequenz im Abstand von wenigen Nanometern im Nahfeld des Messobjekts, während er dessen Oberfläche rastert.

Im SNOM ist die Auflösung theoretisch unbegrenzt, praktisch wird sie vom Durchmesser der Sensorspitze bestimmt. Mit den derzeit verfügbaren SNOM konnte bereits beides, optischer Kontrast und Topographie von Oberflächen, in nanoskaliger Auflösung abgebildet werden. Der praktischen Etablierung von NOA/SNOM in der Zellbiologie (z. B. für höchstauflösende Analysen von Zellreaktionen in lebenden Zellkulturen) standen jedoch seit den Anfängen von SNOM, das heißt seit rund zehn Jahren, zwei erhebliche Hindernisse im Weg: Dämpfungseffekte im flüssigen Medium, die insbesondere die Sensorempfindlichkeit verminderten, und extrem schwache optische Kontraste an der relevanten Zellmembranoberfläche. Eine Lösung dieser Probleme wurde seit den Anfängen von SNOM weltweit angestrebt.

Nun ist es in Ulm gelungen, diese Einschränkungen zu überwinden. In der März-Ausgabe der Zeitschrift "Micron" (Hydrophobic optical elements for near-field optical analysis (NOA) in liquid environment - a preliminary study, 33, 227-231, 2002), zeigen Dr. Andrei P. Sommer und PD Dr. Ralf-Peter Franke vom Zentralinstitut für Biomedizinische Technik, ZBMT, der Universität Ulm, wie durch die hydrophobe Beschichtung optischer Sensoren mit einem biokompatiblen Polymer die Dämpfungsverluste bei Untersuchungen in wäßriger Umgebung effektiv kompensiert werden können. Wie der optische Kontrast in zellbiologischen NOA-Operationen verstärkt werden kann, beschreiben die Forscher in der April-Ausgabe der Zeitschrift "Journal of Proteome Research" (Near-field Optical Analysis of Living Cells in vitro, 1 (2), 111-114, 2002). Zur Kontrastverstärkung im SNOM wurden lebende menschliche Endothelzellen auf hochgradig ebenen Titanscheiben (Spiegel) ausgesät und mit hydrophob (wasserabweisend) beschichteten optischen Biosensoren gerastert. Titan ist ein biokompatibles Material. So konnte erstmalig eine lebende Zelle unbeeinflusst, ohne kontrastverstärkende Labeling-Substanzen im SNOM dargestellt werden.

Damit wurde das von Eric Betzig, der 1991 mit Jay Trautman und Tim Harris die optische Nahfeldmikroskopie SNOM (in Amerika NSOM) publik gemacht hat, in "SCIENCE" prognostizierte Potential der biologischen SNOM-Entwicklung erfüllt und übertroffen. Die Resultate ermutigten zur Einführung von SNOM-Technologien in weite Bereiche der Lebenswissenschaften. Die Ergebnisse der Ulmer Gruppe fanden rasch internationale Beachtung. So berichteten u.a. die Zeitschriften "Medical Drug Discovery" und "Analytical Chemistry" sowie "Biophotonics International" über den Durchbruch. Im Mai 2001 wurden Sommer und Franke von der NASA nach Houston (Texas) eingeladen um dort auf einer von der NASA (in Verbindung mit Dr. Sommer) organisierten internationalen Konferenz über die Entwicklung zu berichten. Die Beiträge erscheinen als Conference Proceedings der 2nd International NASA Photobiology Conference on Nearfield Optical Analysis (NOA), May 2001, National Aeronautics and Space Administration - Johnson Space Flight Center (NASA-JSC), Houston, TX, U.S.A.

Peter Pietschmann | idw

Weitere Berichte zu: Kontrast NASA NOA Optical SNOM Zellfunktionalität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten