Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schutzschalter gegen Erbschäden

12.09.2002


Wichtigen Schaltmechanismus für DNA-Reparatur aufgedeckt


Darstellung des ringförmigen PCNA Moleküls (gelb), an das 3 Ubiquitin-Proteine (rot) geknüpft sind. Diese Modifikation aktiviert die DNA-Reparatur

Darstellung: M. Groll, MPI für Biochemie



Der Träger der Erbinformation, die DNA, kann durch unterschiedliche Umwelteinflüsse, wie beispielsweise UV-Licht, geschädigt werden. Diese Schädigungen führen zu Änderungen in der Erbinformation, so genannten Mutationen. Sie sind eine Hauptursache für die Entstehung von Krebs, aber auch für den Alterungsprozess. Da die Art der Schäden sehr unterschiedlich sein kann, besitzt die Zelle auch verschiedene Möglichkeiten, diese Schäden, und das heißt die DNA, zu reparieren. Einen wichtigen Schritt zur Aufklärung eines bislang noch unzureichend verstandenen Weges bei der DNA-Reparatur konnten Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München jetzt machen. In der neuesten Ausgabe der Zeitschrift Nature (Band 419, 12. September 2002) berichten die Forscher aus der Abteilung Molekulare Zellbiologie von Prof. Stefan Jentsch über ihre Entdeckung.



Grundlegende Prozesse, die in der menschlichen Zelle ablaufen, sind weitgehend identisch mit den Abläufen in Zellen weniger komplexer Organismen, wie z. B. der Bäckerhefe. Da einzellige Organismen aber experimentell leichter zugänglich sind, erforschen Wissenschaftler die Hintergründe der DNA-Reparatur zunächst bei der Bäckerhefe. Dem Zellbiologen Stefan Jentsch und seinen Mitarbeitern ist es nun gelungen, an diesem Modellsystem wichtige Details der Reparaturmechanismen bei geschädigter DNA aufzuklären. Im Mittelpunkt ihres Interesses steht dabei ein Protein mit dem Kürzel PCNA. Es spielt bei der Verdopplung des genetischen Materials (DNA-Replikation) und bei der DNA-Reparatur eine wesentliche Rolle. Das Protein bildet einen Ring, der die DNA umschließt (siehe Abbildung). Während des Replikationsprozesses fährt es quasi im Geleit mit dem für die Verdopplung zuständigen Enzym, der Polymerase, den DNA-Strang ab. Trifft das Duo auf eine Stelle, an der die DNA beschädigt ist, hält es an, um eine Reparatur des Schadens zu ermöglichen.

Vier Mitarbeiter der Arbeitsgruppe - Carsten Hoege, Boris Pfander, George-Lucian Moldovan und George Pyrowolakis - konnten jetzt erstmals zeigen, dass das PCNA-Protein durch Verknüpfung mit weiteren Proteinen verändert wird. Diese sind Ubiquitin bzw. das dazu verwandte Protein SUMO. Wird PCNA mit SUMO verknüpft, so übernimmt es Aufgaben während der DNA-Replikation. Die Verknüpfung mit Ubiquitin schaltet dagegen die DNA-Reparatur-Funktion von PCNA an. Darüber hinaus konnten die Wissenschaftler Enzyme ausfindig machen und ihre Funktion beschreiben, die für den Reparaturmechanismus notwendig sind. Dass dieser neu entdeckte Mechanismus große Bedeutung für die Überlebensfähigkeit der Zellen besitzt, ergaben weitere Experimente: Kann Ubiquitin nicht mehr mit dem PCNA-Protein verknüpft werden, so zeigten sich die Zellen der Bäckerhefe äußerst empfindlich gegenüber UV-Strahlung.

Damit hat die Forschergruppe um Prof. Stefan Jentsch einen wichtigen molekularen Umschaltmechanismus aufgedeckt: PCNA ist quasi ein zellulärer Schutzschalter. Je nachdem mit welchem Molekül er verknüpft wird, schaltet er zwischen verschiedenen Funktionen in der Zelle hin und her. Da der von den Martinsrieder Wissenschaftlern gefundene Reparaturmechanismus beim Menschen identisch ist, hoffen Jentsch und seine Mitarbeiter, dass sie mit ihrer Arbeit einen Grundstein für neue Therapie- und Diagnoseformen bei Krebs gelegt haben.

Originalpublikation:
Carsten Hoege, Boris Pfander, George-Lucian Moldovan, George Pyrowolakis, Stefan Jentsch: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. NATURE 419: 135-141.

Prof. Dr. Stefan Jentsch
Abteilung Molekulare Zellbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18a
2152 Martinsried b. München
E-Mail: jentsch@biochem.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/jentsch/

Weitere Berichte zu: Bäckerhefe DNA DNA-Reparatur PCNA Protein SUMO Ubiquitin Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik