Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erbgut bald schneller entschlüsseln?

29.08.2002


Einzelmolekül-Sequenzierung:
Die Grundlagen sind geschaffen

Die Sequenz des menschlichen Genoms ist weitgehend bekannt. Um die Zusammenhänge zwischen einzelnen Genomabschnitten und beispielsweise bestimmten Krankheiten zu verstehen, müssen nun die entsprechenden Gensequenzen identifiziert, charakterisiert und auf Mutationen untersucht werden. "Mit herkömmlichen Sequenziermethoden ist das viel zu langwierig," erklärt Susanne Brakmann von der Universität Leipzig. "Wenn es dagegen gelänge, einzelne DNA-Moleküle zu sequenzieren, ließen sich wesentlich längere Fragmente "ablesen" und die Sequenzinformationen um Größenordnungen schneller zusammensetzen." Gemeinsam mit Sylvia Löbermann vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen hat sie gerade einen weiteren Meilenstein für dieses Konzept aufgestellt.
Das Prinzip: Die DNA ist eine Doppelhelix aus zwei komplementären Strängen, zusammengehalten durch die Paarung ihrer Bausteine, der Nucleobasen A und T sowie G und C. Die beiden Stränge werden getrennt, einer der Einzelstränge dient nun als Matrize für die Anfertigung einer Kopie - mit Nucleobasen, die mit verschiedenen Fluoreszenzfarbstoffen markiert wurden. Erst kürzlich war es den Forscherinnen gelungen, ein Enzym zu finden, das auch aus sperrigen, markierten Nucleobasen korrekte Kopien synthetisiert (Angew.Chem. 2001, 113, 1473 - 1476). An winzige Kunststoffkügelchen gekoppelt lassen sich die so markierten DNA-Moleküle vereinzeln. Im nächsten Schritt muss der DNA nach dem Salamiprinzip vom Ende her eine Nucleobase nach der anderen abgeschnitten und identifiziert werden. Bereits seit zehn Jahren gibt es spektrometrische Verfahren, mit denen einzelne fluoreszierende Moleküle identifiziert werden können. Eine Hürde dagegen war bis vor kurzem, ein "Salamimesser" zu finden, ein Enzym, das die fluoreszierenden Nucleobasen wieder freisetzt, denn die markierte DNA ist sehr sperrig und windet sich auch anders als das unmarkierte Original.
Alle getesteten "Salamimesser", sprich Exonucleasen, scheiterten zunächst. Statt weitere "Messer" zu testen, variierten die Forscherinnen die Schneidbedingungen: Durch Zugabe des Lösemittels Dioxan konnten die Löslichkeit der DNA erhöht und der Schneidemodus des gewählten Enzyms, E. coli-Exonuclease III, verbessert werden. Werden außerdem nur zwei der vier Nucleobasensorten markiert, ist die DNA weniger sperrig. Wiederholt man das Experiment mit allen möglichen Permutationen, sollte auch so eine vollständige Sequenzanalyse gelingen. "Die Grundlagen für die Einzelmolekül-Sequenzierung sind damit gelegt," zeigt sich Brakmann optimistisch. "Vollautomatische Geräte könnten einzelne Abweichungen in Genabschnitten feststellen und eventuell sogar bis zu 1 Mio. Nucleobasen pro Tag entschlüsseln."

Angewandte Chemie Presseinformation Nr. 17/2002
Angew. Chem. 2002, 114 (17), 3350 - 3352

Kontakt: Dr. S. Brakmann
Angewandte Molekulare
Evolution
Institut für Zoologie
Universität Leipzig
Talstr. 33
D-04103 Leipzig

Fax: (+49) 341-97-36848

E-Mail: sbrakma@rz.uni-leipzig.de

Dr. Kurt Begitt | idw

Weitere Berichte zu: DNA Enzym Erbgut Nucleobasen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie