Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Architektur einer Protein-Transport-Maschine

20.08.2002


Max-Planck-Biophysiker entschlüsseln Protein-Transport-Maschinerie


Der Transport von Proteinen ist für alle lebenden Organismen von grundlegender Bedeutung. Proteine müssen an bestimmte Orte in der Zelle oder auch nach außen gebracht werden. Wissenschaftler am Max-Planck-Institut für Biophysik haben jetzt die Struktur einer weit verbreiteten Protein-Transport-Maschine aufgeklärt, die neue Einblicke ermöglicht, auf welche Weise Proteine durch Zellmembranen transportiert werden (Nature, 8. August 2002).


Das Überleben jeder Zelle hängt davon ab, ob alle in ihr erzeugten Genprodukte, die Proteine, jederzeit an der richtigen Stelle ankommen. So erzeugen bestimmte Zellen wichtige Proteine, die für die Sekretion bestimmt sind, wie z.B. Insulin. Doch allen Zellen gemeinsam ist ihre Begrenzung durch eine dünne Lipidschicht, die Zellmembran, die für Proteine prinzipiell unpassierbar ist. Zellen höherer Organismen sind zusätzlich noch in verschiedene Bereiche unterteilt, die ebenfalls durch derartige Lipid-Membranen voneinander getrennt sind. Alle Organismen benötigen daher spezielle Transportmaschinen, um neue Genprodukte durch die Membranen ihrer Zellen zu schleusen. Dieser Transportprozess muss fehlerfrei verlaufen und unterliegt deshalb genauester Kontrolle.


"Abb. 1: Draufsicht auf den SecYEG-Komplex in der Membran. Das Bild wurde aus elektronenmikroskopischen Aufnahmen zweidimensionaler Kristalle errechnet. Die blauen Stäbe zeigen die 15 membrandurchspannenden Strukturelemente in jeder der beiden Einheiten. Der Balken misst 2 nm. "
"Foto: Max-Planck-Institut für Biophysik "

Bakterienzellen sind relativ einfach aufgebaut, und haben nur einen oder zwei Unterbereiche. Das wichtigste Protein-Transportsystem in bakteriellen Zellen ist das so genannte Sec-System (von Sekretion). Der Vergleich der Gensequenzen hat gezeigt, dass das Sec-System einem weit verbreiteten Transportsystem ähnlich ist, das in höheren Organismen und auch in menschlichen Zellen für den intrazellulären Proteintransport verantwortlich ist. Das Sec-System des Bakteriums Escherichia coli besteht aus drei Proteinen, die man als "SecY", "SecE" und "SecG" bezeichnet.

Dieses System übernimmt die meisten Protein-Transportaufgaben im Bakterium sowie den Einbau bestimmter Proteine in die Membran selbst. Die transportierten Proteine enthalten eine Signalsequenz, die - ähnlich wie eine Postleitzahl - von der Transportmaschinerie erkannt wird. Die neuen Genprodukte werden dann durch einen Kanal geschleust, den die Sec-Maschine in der Membran bildet.

"Abb. 2:Seitenansicht des SecYEG-Komplexes. In der Mitte ist die Vertiefung sichtbar, die vermutlich den geschlossenen Transportkanal darstellt."
"Foto: Max-Planck-Institut für Biophysik"

Einer Arbeitsgruppe um Dr. Ian Collinson am Max-Planck-Institut für Biophysik in Frankfurt/Main haben jetzt erste Bilder vom räumlichen Aufbau dieser Protein-Transport-Maschine in der Zellmembran gewonnen (s. Abb. 1 und 2). Den Forschern gelang es kleine, zweidimensionale Kristalle des Sec-Komplexes erzeugen und dessen räumliche Struktur mit Hilfe der Kryo-Elektronenmikroskopie aufzuklären. Die ganze Transportmaschine misst lediglich 12 mal 6 Nanometer (1 Nanometer = ein Millionstel Millimeter).

Die Bilder zeigen, dass der Komplex aus zwei gleichen Sec-Einheiten besteht. Die Frankfurter Forscher gehen davon aus, dass diese Anordnung der aktiven Form des Sec-Komplexes in der lebenden Zelle entspricht. In jeder der beiden Einheiten haben sie 15 Strukturelemente entdeckt, die die Membran durchspannen. An der Grenzfläche zwischen den beiden Sec-Einheiten fanden sie eine Vertiefung, die sehr wahrscheinlich den geschlossenen Transportkanal darstellt. Sehr wahrscheinlich wird dieser Kanal durch einfache Umorientierung bestimmter Strukturelemente im Inneren des Sec-Komplexes geöffnet und geschlossen. Die Struktur der Sec-Transportmaschine ist ein wichtiger Schritt auf dem Weg zum Verständnis des Proteintransportes in allen Lebewesen.

Originalveröffentlichung:

Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I: Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002 Aug 8;418(6898):662-5

Weitere Informationen erhalten Sie von:

Dr. Ian Collinson
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: 069 - 96769 - 372
Fax: 069 - 96769 - 359
E-Mail: Ian.Collinson@mpibp-frankfurt.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpibp-frankfurt.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops