Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Architektur einer Protein-Transport-Maschine

20.08.2002


Max-Planck-Biophysiker entschlüsseln Protein-Transport-Maschinerie


Der Transport von Proteinen ist für alle lebenden Organismen von grundlegender Bedeutung. Proteine müssen an bestimmte Orte in der Zelle oder auch nach außen gebracht werden. Wissenschaftler am Max-Planck-Institut für Biophysik haben jetzt die Struktur einer weit verbreiteten Protein-Transport-Maschine aufgeklärt, die neue Einblicke ermöglicht, auf welche Weise Proteine durch Zellmembranen transportiert werden (Nature, 8. August 2002).


Das Überleben jeder Zelle hängt davon ab, ob alle in ihr erzeugten Genprodukte, die Proteine, jederzeit an der richtigen Stelle ankommen. So erzeugen bestimmte Zellen wichtige Proteine, die für die Sekretion bestimmt sind, wie z.B. Insulin. Doch allen Zellen gemeinsam ist ihre Begrenzung durch eine dünne Lipidschicht, die Zellmembran, die für Proteine prinzipiell unpassierbar ist. Zellen höherer Organismen sind zusätzlich noch in verschiedene Bereiche unterteilt, die ebenfalls durch derartige Lipid-Membranen voneinander getrennt sind. Alle Organismen benötigen daher spezielle Transportmaschinen, um neue Genprodukte durch die Membranen ihrer Zellen zu schleusen. Dieser Transportprozess muss fehlerfrei verlaufen und unterliegt deshalb genauester Kontrolle.


"Abb. 1: Draufsicht auf den SecYEG-Komplex in der Membran. Das Bild wurde aus elektronenmikroskopischen Aufnahmen zweidimensionaler Kristalle errechnet. Die blauen Stäbe zeigen die 15 membrandurchspannenden Strukturelemente in jeder der beiden Einheiten. Der Balken misst 2 nm. "
"Foto: Max-Planck-Institut für Biophysik "

Bakterienzellen sind relativ einfach aufgebaut, und haben nur einen oder zwei Unterbereiche. Das wichtigste Protein-Transportsystem in bakteriellen Zellen ist das so genannte Sec-System (von Sekretion). Der Vergleich der Gensequenzen hat gezeigt, dass das Sec-System einem weit verbreiteten Transportsystem ähnlich ist, das in höheren Organismen und auch in menschlichen Zellen für den intrazellulären Proteintransport verantwortlich ist. Das Sec-System des Bakteriums Escherichia coli besteht aus drei Proteinen, die man als "SecY", "SecE" und "SecG" bezeichnet.

Dieses System übernimmt die meisten Protein-Transportaufgaben im Bakterium sowie den Einbau bestimmter Proteine in die Membran selbst. Die transportierten Proteine enthalten eine Signalsequenz, die - ähnlich wie eine Postleitzahl - von der Transportmaschinerie erkannt wird. Die neuen Genprodukte werden dann durch einen Kanal geschleust, den die Sec-Maschine in der Membran bildet.

"Abb. 2:Seitenansicht des SecYEG-Komplexes. In der Mitte ist die Vertiefung sichtbar, die vermutlich den geschlossenen Transportkanal darstellt."
"Foto: Max-Planck-Institut für Biophysik"

Einer Arbeitsgruppe um Dr. Ian Collinson am Max-Planck-Institut für Biophysik in Frankfurt/Main haben jetzt erste Bilder vom räumlichen Aufbau dieser Protein-Transport-Maschine in der Zellmembran gewonnen (s. Abb. 1 und 2). Den Forschern gelang es kleine, zweidimensionale Kristalle des Sec-Komplexes erzeugen und dessen räumliche Struktur mit Hilfe der Kryo-Elektronenmikroskopie aufzuklären. Die ganze Transportmaschine misst lediglich 12 mal 6 Nanometer (1 Nanometer = ein Millionstel Millimeter).

Die Bilder zeigen, dass der Komplex aus zwei gleichen Sec-Einheiten besteht. Die Frankfurter Forscher gehen davon aus, dass diese Anordnung der aktiven Form des Sec-Komplexes in der lebenden Zelle entspricht. In jeder der beiden Einheiten haben sie 15 Strukturelemente entdeckt, die die Membran durchspannen. An der Grenzfläche zwischen den beiden Sec-Einheiten fanden sie eine Vertiefung, die sehr wahrscheinlich den geschlossenen Transportkanal darstellt. Sehr wahrscheinlich wird dieser Kanal durch einfache Umorientierung bestimmter Strukturelemente im Inneren des Sec-Komplexes geöffnet und geschlossen. Die Struktur der Sec-Transportmaschine ist ein wichtiger Schritt auf dem Weg zum Verständnis des Proteintransportes in allen Lebewesen.

Originalveröffentlichung:

Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I: Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002 Aug 8;418(6898):662-5

Weitere Informationen erhalten Sie von:

Dr. Ian Collinson
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: 069 - 96769 - 372
Fax: 069 - 96769 - 359
E-Mail: Ian.Collinson@mpibp-frankfurt.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpibp-frankfurt.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie