Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Architektur einer Protein-Transport-Maschine

20.08.2002


Max-Planck-Biophysiker entschlüsseln Protein-Transport-Maschinerie


Der Transport von Proteinen ist für alle lebenden Organismen von grundlegender Bedeutung. Proteine müssen an bestimmte Orte in der Zelle oder auch nach außen gebracht werden. Wissenschaftler am Max-Planck-Institut für Biophysik haben jetzt die Struktur einer weit verbreiteten Protein-Transport-Maschine aufgeklärt, die neue Einblicke ermöglicht, auf welche Weise Proteine durch Zellmembranen transportiert werden (Nature, 8. August 2002).


Das Überleben jeder Zelle hängt davon ab, ob alle in ihr erzeugten Genprodukte, die Proteine, jederzeit an der richtigen Stelle ankommen. So erzeugen bestimmte Zellen wichtige Proteine, die für die Sekretion bestimmt sind, wie z.B. Insulin. Doch allen Zellen gemeinsam ist ihre Begrenzung durch eine dünne Lipidschicht, die Zellmembran, die für Proteine prinzipiell unpassierbar ist. Zellen höherer Organismen sind zusätzlich noch in verschiedene Bereiche unterteilt, die ebenfalls durch derartige Lipid-Membranen voneinander getrennt sind. Alle Organismen benötigen daher spezielle Transportmaschinen, um neue Genprodukte durch die Membranen ihrer Zellen zu schleusen. Dieser Transportprozess muss fehlerfrei verlaufen und unterliegt deshalb genauester Kontrolle.


"Abb. 1: Draufsicht auf den SecYEG-Komplex in der Membran. Das Bild wurde aus elektronenmikroskopischen Aufnahmen zweidimensionaler Kristalle errechnet. Die blauen Stäbe zeigen die 15 membrandurchspannenden Strukturelemente in jeder der beiden Einheiten. Der Balken misst 2 nm. "
"Foto: Max-Planck-Institut für Biophysik "

Bakterienzellen sind relativ einfach aufgebaut, und haben nur einen oder zwei Unterbereiche. Das wichtigste Protein-Transportsystem in bakteriellen Zellen ist das so genannte Sec-System (von Sekretion). Der Vergleich der Gensequenzen hat gezeigt, dass das Sec-System einem weit verbreiteten Transportsystem ähnlich ist, das in höheren Organismen und auch in menschlichen Zellen für den intrazellulären Proteintransport verantwortlich ist. Das Sec-System des Bakteriums Escherichia coli besteht aus drei Proteinen, die man als "SecY", "SecE" und "SecG" bezeichnet.

Dieses System übernimmt die meisten Protein-Transportaufgaben im Bakterium sowie den Einbau bestimmter Proteine in die Membran selbst. Die transportierten Proteine enthalten eine Signalsequenz, die - ähnlich wie eine Postleitzahl - von der Transportmaschinerie erkannt wird. Die neuen Genprodukte werden dann durch einen Kanal geschleust, den die Sec-Maschine in der Membran bildet.

"Abb. 2:Seitenansicht des SecYEG-Komplexes. In der Mitte ist die Vertiefung sichtbar, die vermutlich den geschlossenen Transportkanal darstellt."
"Foto: Max-Planck-Institut für Biophysik"

Einer Arbeitsgruppe um Dr. Ian Collinson am Max-Planck-Institut für Biophysik in Frankfurt/Main haben jetzt erste Bilder vom räumlichen Aufbau dieser Protein-Transport-Maschine in der Zellmembran gewonnen (s. Abb. 1 und 2). Den Forschern gelang es kleine, zweidimensionale Kristalle des Sec-Komplexes erzeugen und dessen räumliche Struktur mit Hilfe der Kryo-Elektronenmikroskopie aufzuklären. Die ganze Transportmaschine misst lediglich 12 mal 6 Nanometer (1 Nanometer = ein Millionstel Millimeter).

Die Bilder zeigen, dass der Komplex aus zwei gleichen Sec-Einheiten besteht. Die Frankfurter Forscher gehen davon aus, dass diese Anordnung der aktiven Form des Sec-Komplexes in der lebenden Zelle entspricht. In jeder der beiden Einheiten haben sie 15 Strukturelemente entdeckt, die die Membran durchspannen. An der Grenzfläche zwischen den beiden Sec-Einheiten fanden sie eine Vertiefung, die sehr wahrscheinlich den geschlossenen Transportkanal darstellt. Sehr wahrscheinlich wird dieser Kanal durch einfache Umorientierung bestimmter Strukturelemente im Inneren des Sec-Komplexes geöffnet und geschlossen. Die Struktur der Sec-Transportmaschine ist ein wichtiger Schritt auf dem Weg zum Verständnis des Proteintransportes in allen Lebewesen.

Originalveröffentlichung:

Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I: Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002 Aug 8;418(6898):662-5

Weitere Informationen erhalten Sie von:

Dr. Ian Collinson
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: 069 - 96769 - 372
Fax: 069 - 96769 - 359
E-Mail: Ian.Collinson@mpibp-frankfurt.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpibp-frankfurt.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie