Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalyse mit Ecken und Kanten

13.08.2002


Wissenschaftler des Fritz-Haber-Instituts zeigen, wie der Verlauf chemischer Reaktionen durch die Feinstruktur mikroskopischer Katalysatorteilchen bestimmt wird


Viele chemische Reaktionen lassen sich durch Katalysatoren in die gewünschte Richtung lenken. Doch wie diese Steuerung im Detail funktioniert, ist in den meisten Fällen ungeklärt. Jetzt ist Forschern am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin der Nachweis gelungen, wie eine solche katalytische Kontrolle eines chemischen Prozesses auf atomarer Ebene vor sich geht (Angewandte Chemie, 15. Juli 2002). Hierzu setzten die Forscher neuartige Molekularstrahltechniken zur genauen Messung von Reaktionsgeschwindigkeiten ein. Das erstmalige mikroskopische Verständnis der Aktivität kleiner Katalysatorteilchen weist auch den Weg zur Optimierung von Katalysatoren im komplexen industriellen Einsatz.


"Abb.: Modell eines Palladium-Katalysatorteilchens auf einem Trägermaterial. Die Verteilung der Reaktionsplätze auf dem winzigen Metallkristall steuert den Verlauf der chemischen Reaktion."


"Grafik: Fritz-Haber-Institut "


Ob in der Umweltschutztechnik oder Industrie, in vielen chemischen Prozessen kommen Katalysatoren zum Einsatz. Ihr Zweck ist es, chemische Reaktionen gezielt zu lenken oder zu beschleunigen: Hierbei geht es immer darum, selektiv mehr von den gewünschten Produkten zu erzeugen und nicht gewünschte (Neben-)Produkte möglichst zu vermeiden. Vielfach bestehen die Katalysatoren aus winzigen Metallteilchen, die jeweils nur aus wenigen tausend Atomen zusammengesetzt sind und auf einem Trägermaterial fein verteilt werden. Erstaunlicherweise lässt sich über die Struktur und Eigenschaften dieser Katalysatorteilchen die Richtung und Geschwindigkeit vieler chemischer Reaktionen bestimmen. Wie diese Steuerung aber genau geschieht, ist bislang weitestgehend ein Rätsel.

Wissenschaftler um Dr. Jörg Libuda und Prof. Hans-Joachim Freund am Fritz-Haber-Institut in Berlin haben diese Problematik anhand einer einfachen chemischen Reaktion untersucht, das heißt an verschiedenen Umsetzungen des Alkohols Methanol, der als industrieller Grundstoff von großer Bedeutung ist. Hierzu setzten die Forscher so genannte Modellkatalysatoren ein, die einerseits eine wohldefinierte Struktur aufweisen, andererseits aber das Potential haben, die Komplexität realer Katalysatoren in gezielter und kontrollierter Weise zu modellieren. Diese reaktiven Metallteilchen bestanden aus winzigen Palladiumkristallen, wie sie auch in vielen kommerziell genutzten Katalysatorsystemen verwendet werden. Die Oberfläche dieser nur wenige Millionstel Millimeter großen Kristalle besteht aus vielen sehr unterschiedlich strukturierten Stellen, wie zum Beispiel Kanten, Ecken oder glatten Kristallflächen.

Bisher wurde vermutet, dass an den verschiedenen Reaktionsplätzen der Katalysatorteilchen auch jeweils nur ganz bestimmte chemische Reaktionen ablaufen. Um an den unterschiedlichen Stellen in ihrem Modellsystem die Geschwindigkeit der chemischen Vorgänge genau messen zu können, verwendeten die Berliner Forscher mehrere so genannte Molekularstrahlen. In diesen Strahlen bewegen sich Moleküle gemeinsam in eine genau bestimmte Richtung, so dass ihr Auftreffen auf dem Katalysator präzise kontrolliert werden kann.

Bei ihren Experimenten konnten die Wissenschaftler auf dem Katalysator zwei verschiedene Reaktionswege des Methanols beobachten: Entweder wurde innerhalb des Methan-Moleküls eine chemische Bindung zwischen Kohlenstoff- und Wasserstoffatomen gebrochen oder es wurde die Kohlenstoff-Sauerstoff-Bindung getrennt. Damit konnten die Forscher direkt nachweisen, dass der zweite Reaktionsweg, also die Aufspaltung der C-O-Bindung, gerade durch die Kanten der Katalysatorteilchen besonders beschleunigt wurde. Dr. Jörg Libuda, Arbeitsgruppenleiter am Fritz-Haber-Institut, stellte dazu fest: "Uns ist es erstmals gelungen, eine solche Katalyse an kleinen Metallteilchen von bisher rein empirisch gestützten Vorstellungen auf fundierte, mikroskopische Füße zu stellen. Mit diesem atomaren Verständnis des katalytischen Mechanismus liefern wir auch grundsätzlichen Input für die Industrie - was braucht man im Detail, um Katalysator-Systeme zu verstehen und letztlich noch genauer steuern zu können."

Originalveröffentlichung der Arbeit: S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, H.-J. Freund: ’Katalytische Aktivität und Vergiftung spezifischer aktiver Zentren von Metall-Nanopartikeln auf Trägern’, Angewandte Chemie, Vol. 114, No. 14, July 15, 2002, p. 2532-35

S. Schauermann, J. Hoffmann, V. Johanék, J. Hartmann, J. Libuda, H.-J. Freund:’Catalytic Activity and Poisoning of Specific Sites on Supported Metal Nanoparticles’ Angewandte Chemie International Edition, Vol. 41, No. 14, July 15, 2002, p. 2643-46

Weitere Informationen erhalten Sie von:

Dr. Jörg Libuda
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: (0 30) 84 13 - 41 39
Fax: (0 30) 84 13 - 43 09
E-Mail: libuda@fhi-berlin.mpg.de

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Fritz-Haber-Institut Kante Katalysator Katalysatorteilchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften