Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf Chips gebaut: Mini-Labors sollen Analytik verbessern

01.08.2002


Mit drei Millionen Euro fördert die Bayerische Forschungsstiftung den neuen Bayerischen Forschungsverbund "Miniaturisierte Analyseverfahren durch Nanotechnologie in Biochemie, Chemie und Physik" (ForNano). Drei der neun Projekte sind an der Uni Würzburg angesiedelt. Zusammen erhalten sie rund 700.000 Euro Fördermittel.

Über dem Forschungsverbund könnte genau so gut das zurzeit moderne Schlagwort "Lab on a chip" stehen (Labor auf einem Chip). Dahinter verbergen sich Bemühungen, mit Hilfe von "Minilabors" Analyse- und Diagnosemethoden weiter zu verbessern. Von der Uni Würzburg sind Thomas Bayerl, Alfred Forchel und Dr. Lukas Worschech vom Physikalischen Institut sowie der Pharmakologe Martin Lohse aus dem Bereich der Biomedizin an dem neuen Forschungsverbund beteiligt.

Bei dem Projekt von Prof. Bayerl geht es darum, künftig die Gesamtheit der Membranproteine einer Zelle analysieren zu können. Diese Proteine spielen bei vielen Prozessen eine zentrale Rolle, lassen sich aber bislang in ihrem normalen Umfeld kaum erforschen. Darum sollen sie mitsamt ihrer natürlichen Umgebung, also eingebettet in eine Membran, auf nanostrukturierten Halbleiterchips fixiert werden. Diese enthalten Elektroden, mit deren Hilfe sich die Proteine auf der Chip-Oberfläche bewegen lassen.

Ziel dieser Manipulation ist es, die Proteine auf den Chips zu sortieren, um sie dann in einem weiteren Schritt identifizieren und mit der Protein-Ausstattung von anderen Zellen vergleichen zu können. So kann man zum Beispiel die Membranproteine gesunder und kranker Zellen einander gegenüberstellen und daraus Erkenntnisse gewinnen, die für die Bekämpfung von Krankheiten möglicherweise wichtig sind. Die Entwicklung dieser Technologie erfordert eine enge Kooperation von Membranbiophysik, Halbleiterphysik, Bioinformatik und Zellbiologie.

Um die Trennung der Membranproteine effektiv kontrollieren zu können, müssen Elektrodenkämme hergestellt werden, deren Abstand voneinander ungefähr so groß ist wie die Membran dick. Um das zu erreichen, sind neuartige Elektrodensysteme mit Abmessungen von wenigen milliardstel Metern nötig. Deren Entwicklung und Charakterisierung bilden den Schwerpunkt des ForNano-Projekts von Prof. Forchel und PD Worschech.

Die Physiker setzen dabei moderne Verfahren der Nanostrukturtechnik ein, zum Beispiel die Elektronen- oder Ionenstrahllithographie. Ihre Kenntnisse aus der Nanoelektronik nutzen sie, um integrierte Steuerungselemente zu realisieren und geeignete Kontrollalgorithmen zu testen. Diese Arbeiten werden in enger Kooperation mit Prof. Bayerl durchgeführt.

Prof. Lohse beschäftigt sich in seinem Projekt mit optischen Methoden, die Signale in Zellen sichtbar machen sollen. Die Stimulation von Zellen mit Hormonen führt häufig zu einem biochemischen Signal in der Zelle, besonders oft kommt es dabei zur Synthese des "zweiten Botenstoffs" cyclo-AMP. Dieser lässt sich mit verschiedenen biochemischen Verfahren messen, aber dazu muss die Zelle zerstört werden und man erhält keine räumliche Information über seine Konzentration.

Jetzt soll eine Methode weiterentwickelt werden, mit der das cyclo-AMP in intakten Zellen im Mikroskop sichtbar gemacht werden kann. Dieses Verfahren könnte vor allem für Screening-Untersuchungen in der biotechnologischen und pharmazeutischen Industrie angewendet werden.

Das Konzept der Bayerischen Forschungsverbünde steht für interdisziplinäre Projekte aus der anwendungsnahen Forschung. In einem Verbund arbeiten Wissenschaftler aus mehreren Universitäten eng mit der Wirtschaft zusammen. Das soll die Grundlage schaffen, um die Ergebnisse zügig in Produkte, Dienstleistungen und innovative Prozesse umzusetzen.

Finanziert werden die Forschungsarbeiten zu etwa je einem Drittel von der bayerischen Wirtschaft, der Bayerischen Forschungsstiftung und der Bayerischen Staatsregierung. Das Wissenschaftsministerium fördert darüber hinaus die Einrichtung neuer Verbünde.

Robert Emmerich | idw

Weitere Berichte zu: Forschungsverbund Membranprotein Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics