Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen: Effiziente Technik macht Denken erst möglich

01.08.2008
Kontakte zwischen Nervenzellen werden kontinuierlich auf- und wieder
abgebaut. Dabei ermitteln die Zellen sehr schnell, welche Verbindungen
sinnvoll sind und welche nicht
Nervenzellen bauen ständig neue Kontakte zu ihren Nachbarzellen auf.
Während der Entwicklung entsteht so das Grundgerüst unseres Gehirns. Im
Erwachsenenalter ermöglichen neue Kontakte Lernen und Gedächtnis.
Doch nicht jeder Zellkontakt ist sinnvoll - der Großteil wird schnell wieder
abgebaut. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in
Martinsried bei München haben nun eine ganz neue Technik beschrieben,
mit der Nervenzellen sehr zeit- und energiesparend die Qualität
kontaktierter Zellen abschätzen können. (Neuron, 31. Juli 2008)
Das Gehirn besteht aus hundert Milliarden Nervenzellen. Mehr noch: Jede dieser Zellen ist über viele tausend Kontaktstellen mit ihren Nachbarzellen verbunden. Während der Entwicklung müssen junge Nervenzellen mit den richtigen Partnerzellen in Kontakt treten, damit das Gehirn seine komplexen Aufgaben erfüllen kann. Doch auch im Erwachsenenalter werden Kontakte zwischen Nervenzellen ständig auf- und wieder abgebaut. Erst dieser kontinuierliche Umbau des Gehirns ermöglicht es uns, zu lernen oder zu vergessen.

Aufwendiger Gehirnumbau

Doch der Auf- und Umbau des Gehirns verschlingt viel Energie. Nicht umsonst ist das Gehirn das Organ mit dem höchsten Energieverbrauch. Eigentlich müsste der Energieverbrauch jedoch noch deutlich höher sein. Denn sowohl junge als auch erwachsene Nervenzellen lassen bei der Kontaktsuche viele hundert Zellfortsätze auf ihre Nachbarzellen zuwachsen. Kommt es zum Zellkontakt müssen Informationen über den Wert der Verbindung ausgetauscht werden: Passen die Zellen nicht optimal zusammen, wird der Fortsatz nach wenigen Sekunden bis Minuten wieder abgebaut. Bisher nahm man an, dass Nervenzellen Informationen nur über spezielle Kontaktstellen, die Synapsen, austauschen können. Es dauert jedoch bis zu zwei Tagen, bevor eine Synapse funktionstüchtig ist - verschwendete Zeit und Energie, wenn der Kontakt wieder abgebaut wird. Die Entwicklung des Gehirns könnte fast 1000 Jahre in Anspruch nehmen, wenn an jedem Zellkontakt erst eine Synapse reifen müsste.

Kalzium: der Schlüssel zur Effizienz

Anscheinend können Nervenzellen also auch ohne Synapsen Informationen über ihre Nachbarn einholen. Wie sie das schaffen, haben nun die beiden Neurobiologen Christian Lohmann und Tobias Bonhoeffer vom Max-Planck-Institut für Neurobiologie geklärt. Sie markierten einzelne Nervenzellen mit Fluoreszenzfarbstoffen und beobachteten sie unter einem speziellen Mikroskop. So fanden sie das Geheimnis des Informationsaustauschs: Lokale Kalzium-Signale übermitteln den Zellen schnell alle nötigen Informationen. Erst wenn Zelle und Kontaktstelle für einen langfristigen Kontakt geeignet sind, wird auch tatsächlich eine Synapse ausgebaut.

Wie funktioniert dies konkret? Trifft ein auswachsender Fortsatz auf eine Nachbarzelle, so löst dies eine Kalzium-Ausschüttung an der Basis des Fortsatzes aus. Dieses Kalzium-Signal funktioniert dann wie ein Stoppschild: Der Fortsatz stellt sein Wachstum sofort ein. Gleichzeitig enthält dieses Signal bereits alle wichtigen Informationen über die Qualität des neuen Kontakts. Denn nur wenn das Kalzium-Signal deutlich höher ist als der umgebende Kalzium-Spiegel der Zelle, bleibt der Kontakt bestehen. Ansonsten zieht sich der Fortsatz zurück und die Nervenzelle sucht an anderer Stelle nach einer geeigneten Partnerzelle.

Passend für Jung und Alt

"Die Effizienz dieser Technik hat uns beide erstaunt", berichtet Tobias Bonhoeffer. "So spart das Gehirn Zeit und Energie und sammelt gleichzeitig wichtige Informationen - sozusagen im Vorbeigehen." Die Wissenschaftler nehmen an, dass die gleiche Technik auch im erwachsenen Gehirn Nervenzellen bei der Einschätzung ihrer Nachbarzellen dient. So können schnell die richtigen Partnerzellen gefunden und ein Gedanke zu Ende geführt werden.

Originalveröffentlichung:
Christian Lohmann und Tobias Bonhoeffer
A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia

Neuron, 31. Juli 2008

Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3414, Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten