Herpes Simplex-Attacke im Fokus

Herpesviren etablieren sich nach einer Infektion lebenslang im Organismus und können immer wieder erneut zum Ausbruch einer Krankheit führen. Molekulare Details des Infektionsvorgangs waren bisher auf zellulärer Ebene noch nicht bekannt.

Ulrike Maurer und Kay Grünewald vom Max-Planck-Institut für Biochemie und Beate Sodeik von der Medizinischen Hochschule Hannover zeigen jetzt detailliert, wie das Virus seine Wirtszelle befällt und in sie eindringt. Sie veröffentlichen ihre neuesten Ergebnisse in der aktuellen Ausgabe der Zeitschrift Proceedings of the National Academy of Sciences of the U.S.A. (PNAS, 29.7.2008).

Viren können sich nicht selbständig vermehren, sondern müssen Wirtszellen infizieren und deren Stoffwechsel umprogrammieren, damit diese viele neue Viren produzieren und freisetzen. Während einer Infektion heftet sich das Virus an die Wirtszelle an und bringt seine genetische Information (DNA oder RNA) in die Zelle. Die DNA oder RNA des Virus sorgt dafür, dass zelluläre Prozesse auf die Virusvermehrung ausgerichtet werden, wobei die Zelle selbst dabei in der Regel zugrunde geht. Virusforscher am Max-Planck-Institut für Biochemie in Martinsried erforschen wie Viren sich an Wirtszellen anheften und welche Proteinstrukturen an der Infektion beteiligt sind.

Sie konzentrieren sich dabei auf das Herpes Simplex Virus-1, das zu einer großen Virusfamilie gehört, die nicht nur Herpes-Bläschen am Mund hervorrufen, sondern neben Windpocken, Gürtelrose und Karzinomen für mehr als 60 verschiedene Krankheitsbilder bei Mensch oder Tier verantwortlich sind.

Ulrike Maurer studierte in der Forschungsgruppe um Kay Grünewald, die Anheftung des Herpesvirus im Elektronenmikroskop. Die eingesetzte Technik der Kryo-Elektronentomographie gibt den Forschern die Möglichkeit, zelluläre Vorgänge als Schnappschüsse festzuhalten. Dabei werden schockgefrorene Zellen bei etwa minus 180 °C im Elektronenmikroskop untersucht. Aus einer Vielzahl von Einzelbildern können dynamische Prozesse in den Zellen auf molekularer Ebene untersucht werden. Die neuesten Ergebnisse aus der Forschungsgruppe „Zelluläre Infektion durch Viren“ in Martinsried liefern erstmalig „Live-Aufnahmen“ vom Vorgang der Infektion.

Zunächst studierten die Wissenschaftler die Anheftung der Viren an tierischen und menschlichen Zellen und konnten beobachten, wie die mit Proteinen bestückte Membranhülle des Virus mit der Membran der Zelle verschmilzt und den Virusinhalt in die Zelle freisetzt. Um noch genauere Studien durchführen zu können, studierten Ulrike Maurer und ihre Kollegen die Virus Infektion an Synaptosomen, isolierten Nerven-Enden, die über Nervenzellen kommunizieren. Die dünneren Zellstrukturen der Synaptosomen ermöglichen Aufnahmen von bisher unerreichter Auflösung.

Der Infektionsvorgang im Detail

Frühere Studien von Kay Grünewald und seinen Kollegen klärten den Aufbau des Herpes Simplex Virus auf: Die DNA ist in einem ikosaeder-förmigen symmetrischen Kapsid eingeschlossen, das von zwei Schichten umgeben ist, dem Tegument und einer Membranhülle, auf deren Oberfläche Glykoproteine sitzen, die den Eintritt in die Wirtszelle ermöglichen.

„Wir können aus der Vielzahl der einzelnen Schnappschüsse nun eindeutig den dynamischen Prozess der Infektion rekonstruieren“, so Grünewald. Nach den neuesten Erkenntnissen verschmilzt die Membranhülle des Virus mit der Plasmamembran der Zelle, wobei die Virusmembran mit den Glykoproteinen in die Zellmembran integriert werden. Das vom Tegument eingeschlossene Kapsid des Virus gelangt in die Zelle. Dort löst sich auch das Tegument ab und das freie Kapsid wandert zum Zellkern.

Für den früher bereits von Grünewald und Kollegen beschriebenen asymmetrischen Aufbau der Proteinhüllen des Herpes Simplex Virus finden die Wissenschaftler nun ebenfalls eine Erklärung. „Wir fanden nur eine einzige offene Pore bei allen Infektionsvorgängen, die wir untersuchten und diese wurde nur gebildet an der dünnsten Stelle des Teguments, d. h. der Bereich, in dem Viruskapsid und Hüllmenbran einander am nächsten sind. Wir vermuten deshalb, dass dieser Pol des Virus für die Verschmelzung wichtig ist, während der von einer dickeren Hülle umgebene Gegenpol eher für den Zusammenbau der Viren wichtig ist“.

Die neuesten Ergebnisse aus Martinsried sind ein weiterer Beweis, dass die Elektronenmikroskopie von schockgefrorenen Zellen durch die Technik der Kryo-Elektronentomographie die Beobachtung von dynamischen Prozessen in Zellen mit einzigartiger Auflösung ermöglicht. Die detaillierte Beschreibung der Herpes-Infektion von Zellen dürfte jedoch nicht nur Strukturbiologen, Zellbiologen und Virologen erfreuen, sondern auch für die Designer neuer Medikamente gegen die Virus-Infektionen von großer Bedeutung sein.

Originalpublikation:
Ulrike E. Maurer, Beate Sodeik, and Kay Grünewald
Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry.
Proceedings of the National Academy of Sciences of the USA (PNAS), 105(30): 10559-10564; 29. Juli 2008
Kontakt:
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18, 82152 Martinsried
Tel. 089 8578 2824, Fax 089 8578-2943
diehl@biochem.mpg.de

Media Contact

Eva-Maria Diehl idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer