Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streptokokken-Infektion: Unbekannte Rezeptormoleküle für Immunreaktion verantwortlich?

18.07.2008
Die Zellen des menschlichen Immunsystems erkennen das Bakterium Streptococcus pyogenes anders als man bisher allgemein annahm. Im Rahmen eines vom Wissenschaftsfonds (FWF) finanzierten Projektes publizieren MikrobiologInnen der Universität Wien überraschende Ergebnisse der ersten Studie, die sich mit den Details der Immunantwort auf Streptokokken befasst.

Das Bakterium Streptococcus pyogenes verursacht beim Menschen eine Vielzahl von Erkrankungen wie z.B. Scharlach, Mandelentzündungen, Wundinfektionen, septischem Schock oder, als Spätfolge, rheumatischem Fieber und Nierenerkrankungen. Schwerwiegende Streptokokken-Infektionen haben meist eines gemeinsam: es kommt zu einer Überreaktion des Immunsystems, die oft schwer behandelbar ist und den Patienten sogar in Lebensgefahr bringen kann.

Dringt der Erreger in den Körper ein, werden die sogenannten Fresszellen (Makrophagen) des angeborenen Immunsystems aktiv. Als ersten Schritt muss allerdings ein Rezeptormolekül der Fresszelle das Bakterium erkennen, um eine Immunreaktion auszulösen.

Bisher ging man davon aus, dass die Rezeptormoleküle aus der Gruppe der Toll-like Rezeptoren (TLR) Streptokokken erkennen und das Signal zum Anschalten der Immunreaktion an ein zentrales Signalmolekül (MyD88) weitergeben. Die Forschungsgruppen von Pavel Kovarik und Emmanuelle Charpentier an den Max F. Perutz Laboratories am Campus Vienna Biocenter in Wien fanden nun jedoch heraus, dass keines der bisher bekannten TLR-Rezeptormoleküle für diesen ersten Schritt der Streptokokken-Erkennung verwendet wird. Wohl aber ist im zweiten Schritt der Immunsystem-Aktivierung das bereits bekannte Signalmolekül MyD88 beteiligt. In der Fachzeitschrift "Journal of Biological Chemistry" sind die Ergebnisse der ersten Studie, die sich mit den Details der zellulären Erkennungs-Mechanismen von Streptokokken beschäftigt nun nachzulesen.

"Es ist eine große Überraschung, dass nicht der bisher angenommene TLR2-Rezeptor bei Streptokokken-Infektionen zur Erkennung dient", sagt Pavel Kovarik, Immunbiologe der Universität Wien. "Auch keines der anderen Moleküle dieser Rezeptor-Familie kommt zum Einsatz, obwohl der zweite Schritt der Signalweiterleitung über MyD88 läuft. Wir begeben uns nun auf die spannende Suche nach einem noch gänzlich unbekannten Rezeptor", erläutert Kovarik die Pläne für das nächste Forschungsprojekt.

Bisher konnte man nicht erklären, warum gerade Infektionen mit Streptokokken besonders schwere Erkrankungen und Therapie-Komplikationen hervorrufen. Die Forscher vermuten, dass das noch unbekannte Rezeptormolekül der fehlende Puzzlestein zum Verständnis der menschlichen Immunantwort auf diesen Bakterienstamm ist.

Auf die Suche nach dem neuen Rezeptor will sich Pavel Kovarik gemeinsam mit seiner Kollegin Sylvia Knapp, Forscherin am Zentrum für Molekulare Medizin (CeMM) der Österreichischen Akademie der Wissenschaften und Fachärztin für Infektiologie am AKH Wien begeben. Auch die Beteiligung der Biotechnologie-Firma Intercell AG an diesem Projekt ist geplant. Das Ziel des Grundlagenforschers Kovarik und der klinischen Forscherin Knapp: das zentrale, noch unbekannte Molekül des Mechanismus der Streptokokken-Erkennung zu entschlüsseln und eine Substanz zu finden, die regulierend in die überschießende Reaktion der menschlichen Immunzellen eingreifen kann.

Originalpublikation: Gratz N, Siller M, Schaljo B, Pirzada ZA, Gattermeier I, Vojtek I, Kirschning CJ, Wagner H, Akira S, Charpentier E, Kovarik P. Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9. J Biol Chem. 2008 Jul 18;283(29):19879-19887.

Die Max F. Perutz Laboratories sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. Diese inter-universitäre Kooperation ist ein neuer und innovativer Ansatz um Forschung und Lehre an beiden Universitäten zu stärken. Am Institut in der Bohr-Gasse forschen 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut.

Rückfragehinweise:
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexandra.frey@univie.ac.at
www.univie.ac.at/175
Dr. Lisa Cichocki
Communications
Max F. Perutz Laboratories
1030 Wien, Dr. Bohr-Gasse 9
T +43-1-4277-24014
lisa.cichocki@mfpl.ac.at
www.mfpl.ac.at
Wissenschaftlicher Kontakt:
Ao. Univ.-Prof. Mag. Dr. Pavel Kovarik
Max F. Perutz Laboratories
1030 Wien, Dr. Bohr-Gasse 9
T +43-1-4277-54608
pavel.kovarik@univie.ac.at
http://www.mfpl.ac.at/index.php?cid=47

Alexandra Frey | idw
Weitere Informationen:
http://www.univie.ac.at/175
http://www.mfpl.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise