Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzliche Grundlagenforschung kann Krebsforschern helfen

15.07.2008
Proteinfunktionen in Pflanzenzellen mit Relevanz für die Krebsforschung entdeckt

Der Arbeitsgruppe von Dr. Claus Schwechheimer am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen ist es gelungen, in Pflanzenzellen eine Proteinfunktion zu identifizieren, deren Verständnis wichtige Impulse für die Krebsforschung beim Menschen geben könnte (Development 135 - Juni 2008).

Für alle Lebewesen ist der geregelte Abbau von Proteinen in ihren Zellen ebenso überlebenswichtig wie deren Herstellung: Ein fehlerhafter oder unvollständiger Proteinabbau führt oft zu Fehlfunktionen in der Zelle oder sogar zu deren Absterben.

Der zentrale Steuerungsapparat für die Kontrolle dieser Abbauprozesse ist in allen Organismen - ob Pflanze, Tier oder Mensch - sehr ähnlich: Ein als COP9-Signalosom bezeichneter Proteinkomplex steuert die Aktivität sogenannter E3-Ligasen, deren Aufgabe es ist, Proteine so zu kennzeichnen, dass sie dem gezielten Abbau über einen weiteren Proteinkomplex zugeführt werden können. Eine verringerte Anzahl von Signalosomen in einer Zelle führt zu massiven Störungen in der E3-Ligasefunktion, und als Konsequenz zu einem Anstieg an krankhaften Fehlfunktionen, die in den betroffenen Zellen zur unkontrollierten Zellteilung (Tumore) oder zum Zelltod führen können.

Das COP9-Signalosom ist für viele Prozesse in einer Zelle verantwortlich, indem es eine große Anzahl von E3-Ligasen und damit den Abbau einer Vielzahl regulatorischer Proteine steuert. Eine Aufklärung sämtlicher dieser Regelkreise stellt eine nahezu unlösbare Aufgabe für einen einzelnen Forscher dar. Mit Hilfe modernster Technologie ist es Claus Schwechheimer nun jedoch gelungen, aus der Vielzahl dieser Regelkreise Hinweise auf die Fehlfunktion eines die Zellteilung kontrollierenden Mechanismus zu erhalten. Die Zellteilung stellt einen essentiellen Prozess im Wachstum eines Organismus dar; "und gleichermaßen stellt sie die Zelle vor die knifflige Aufgabe, die DNA der Mutterzelle vollständig und unverändert an die beiden Tochterzellen weiterzugeben - eine fehlerhafte Weitergabe führt fast zwangsläufig zu Krankheit oder Tod", führt der Wissenschaftler aus. Zellen haben daher ausgeklügelte Mechanismen entwickelt, um die Entstehung solcher Fehler zu minimieren und dennoch auftretende Fehler wieder zu reparieren.

Tatsächlich gelang es nun Schwechheimer und seinem Team, an Pflanzenzellen mit geschädigtem Signalosom aufzuzeigen, dass diese zwar ihre DNA verdoppelt hatten, aber den eigentlichen Teilungsprozess abgebrochen hatten, da ihre DNA geschädigt war. Da dadurch jegliches Wachstum verhindert wird, verharrt die Zelle in einem unvollständigen Teilungszustand. Schwechheimer vermutet nun, dass die speziell für die Reparatur der DNA-Schäden verantwortlichen E3-Ligasen nicht mehr korrekt arbeiten, wenn das Signalosom als zentrale Steuerungseinheit beschädigt ist oder fehlt. Damit wäre eine Verbindung zwischen einem defekten Signalosom und einer überlebenswichtigen Zellfunktion gefunden. "Das war wie die Suche nach der Nadel im Heuhaufen, und wir hatten auch Glück dabei", gibt Schwechheimer zu.

Dieser überlebenswichtige Reparaturmechanismus ist aber keineswegs auf Pflanzenzellen beschränkt, denn auch tierische und menschliche Körperzellen sind darauf angewiesen, dass die DNA-Verdoppelung und die Zellteilung fehlerfrei funktionieren. Andernfalls entstehen Fehlfunktionen, die in vielen Fällen die Ursache für Krebs sind. "Wir haben hier mit großer Wahrscheinlichkeit einen Mechanismus gefunden, der auch in unseren Körperzellen für die DNA-Reparatur essentiell ist, eine Verbindung zur Krebsentstehung ist daher äußerst wahrscheinlich", sagt Schwechheimer. Diese Relevanz für menschliche Zellen und die Entstehung von Krebs muss nun überprüft werden, und dabei setzt der Pflanzenforscher auf den Austausch mit seinen Kollegen aus der medizinischen Forschung.

Für seine eigene Forschung an Pflanzenzellen hat Schwechheimer klare Ziele: "Wir haben einen universellen Zellmechanismus gefunden, den wir in Pflanzen sehr gezielt und ohne Risiko für den Menschen erforschen können. Uns fehlen noch wichtige Details, die wir nun mit Nachdruck aufklären wollen, um diese Prozesse in der Zelle in Zukunft beeinflussen zu können."

Bildmaterial
Online zum Download unter http://www.zmbp.uni-tuebingen.de, dort weiter unter News.
Für Nachfragen:
Matthias Hendrichs
ZMBP - Development & Communication
Tel. 0 70 71/2 97 30 95
E-Mail mh@uni-tuebingen.de
Weiterführende Informationen
- Original-Publikation online erschienen im Juni 2008 in Development: The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. (http://dev.biologists.org/cgi/content/full/135/11/2013)
- Arbeitsgruppe Claus Schwechheimer: http://www.zmbp.uni-tuebingen.de/DevelopmentalGenetics/ResearchGroups/schwech/index.html
- Schwerpunktprogramm SPP 1365 der Deutschen Forschungsgemeinschaft (DFG): http://www.dfg.de/aktuelles_presse/information_fuer_die_wissenschaft/

schwerpunktprogramme/archiv/info_wissenschaft_21_07.html

Michael Seifert | idw
Weitere Informationen:
http://www.zmbp.uni-tuebingen.de

Weitere Berichte zu: Pflanzenzelle Protein Signalosom Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise