Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzliche Grundlagenforschung kann Krebsforschern helfen

15.07.2008
Proteinfunktionen in Pflanzenzellen mit Relevanz für die Krebsforschung entdeckt

Der Arbeitsgruppe von Dr. Claus Schwechheimer am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen ist es gelungen, in Pflanzenzellen eine Proteinfunktion zu identifizieren, deren Verständnis wichtige Impulse für die Krebsforschung beim Menschen geben könnte (Development 135 - Juni 2008).

Für alle Lebewesen ist der geregelte Abbau von Proteinen in ihren Zellen ebenso überlebenswichtig wie deren Herstellung: Ein fehlerhafter oder unvollständiger Proteinabbau führt oft zu Fehlfunktionen in der Zelle oder sogar zu deren Absterben.

Der zentrale Steuerungsapparat für die Kontrolle dieser Abbauprozesse ist in allen Organismen - ob Pflanze, Tier oder Mensch - sehr ähnlich: Ein als COP9-Signalosom bezeichneter Proteinkomplex steuert die Aktivität sogenannter E3-Ligasen, deren Aufgabe es ist, Proteine so zu kennzeichnen, dass sie dem gezielten Abbau über einen weiteren Proteinkomplex zugeführt werden können. Eine verringerte Anzahl von Signalosomen in einer Zelle führt zu massiven Störungen in der E3-Ligasefunktion, und als Konsequenz zu einem Anstieg an krankhaften Fehlfunktionen, die in den betroffenen Zellen zur unkontrollierten Zellteilung (Tumore) oder zum Zelltod führen können.

Das COP9-Signalosom ist für viele Prozesse in einer Zelle verantwortlich, indem es eine große Anzahl von E3-Ligasen und damit den Abbau einer Vielzahl regulatorischer Proteine steuert. Eine Aufklärung sämtlicher dieser Regelkreise stellt eine nahezu unlösbare Aufgabe für einen einzelnen Forscher dar. Mit Hilfe modernster Technologie ist es Claus Schwechheimer nun jedoch gelungen, aus der Vielzahl dieser Regelkreise Hinweise auf die Fehlfunktion eines die Zellteilung kontrollierenden Mechanismus zu erhalten. Die Zellteilung stellt einen essentiellen Prozess im Wachstum eines Organismus dar; "und gleichermaßen stellt sie die Zelle vor die knifflige Aufgabe, die DNA der Mutterzelle vollständig und unverändert an die beiden Tochterzellen weiterzugeben - eine fehlerhafte Weitergabe führt fast zwangsläufig zu Krankheit oder Tod", führt der Wissenschaftler aus. Zellen haben daher ausgeklügelte Mechanismen entwickelt, um die Entstehung solcher Fehler zu minimieren und dennoch auftretende Fehler wieder zu reparieren.

Tatsächlich gelang es nun Schwechheimer und seinem Team, an Pflanzenzellen mit geschädigtem Signalosom aufzuzeigen, dass diese zwar ihre DNA verdoppelt hatten, aber den eigentlichen Teilungsprozess abgebrochen hatten, da ihre DNA geschädigt war. Da dadurch jegliches Wachstum verhindert wird, verharrt die Zelle in einem unvollständigen Teilungszustand. Schwechheimer vermutet nun, dass die speziell für die Reparatur der DNA-Schäden verantwortlichen E3-Ligasen nicht mehr korrekt arbeiten, wenn das Signalosom als zentrale Steuerungseinheit beschädigt ist oder fehlt. Damit wäre eine Verbindung zwischen einem defekten Signalosom und einer überlebenswichtigen Zellfunktion gefunden. "Das war wie die Suche nach der Nadel im Heuhaufen, und wir hatten auch Glück dabei", gibt Schwechheimer zu.

Dieser überlebenswichtige Reparaturmechanismus ist aber keineswegs auf Pflanzenzellen beschränkt, denn auch tierische und menschliche Körperzellen sind darauf angewiesen, dass die DNA-Verdoppelung und die Zellteilung fehlerfrei funktionieren. Andernfalls entstehen Fehlfunktionen, die in vielen Fällen die Ursache für Krebs sind. "Wir haben hier mit großer Wahrscheinlichkeit einen Mechanismus gefunden, der auch in unseren Körperzellen für die DNA-Reparatur essentiell ist, eine Verbindung zur Krebsentstehung ist daher äußerst wahrscheinlich", sagt Schwechheimer. Diese Relevanz für menschliche Zellen und die Entstehung von Krebs muss nun überprüft werden, und dabei setzt der Pflanzenforscher auf den Austausch mit seinen Kollegen aus der medizinischen Forschung.

Für seine eigene Forschung an Pflanzenzellen hat Schwechheimer klare Ziele: "Wir haben einen universellen Zellmechanismus gefunden, den wir in Pflanzen sehr gezielt und ohne Risiko für den Menschen erforschen können. Uns fehlen noch wichtige Details, die wir nun mit Nachdruck aufklären wollen, um diese Prozesse in der Zelle in Zukunft beeinflussen zu können."

Bildmaterial
Online zum Download unter http://www.zmbp.uni-tuebingen.de, dort weiter unter News.
Für Nachfragen:
Matthias Hendrichs
ZMBP - Development & Communication
Tel. 0 70 71/2 97 30 95
E-Mail mh@uni-tuebingen.de
Weiterführende Informationen
- Original-Publikation online erschienen im Juni 2008 in Development: The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. (http://dev.biologists.org/cgi/content/full/135/11/2013)
- Arbeitsgruppe Claus Schwechheimer: http://www.zmbp.uni-tuebingen.de/DevelopmentalGenetics/ResearchGroups/schwech/index.html
- Schwerpunktprogramm SPP 1365 der Deutschen Forschungsgemeinschaft (DFG): http://www.dfg.de/aktuelles_presse/information_fuer_die_wissenschaft/

schwerpunktprogramme/archiv/info_wissenschaft_21_07.html

Michael Seifert | idw
Weitere Informationen:
http://www.zmbp.uni-tuebingen.de

Weitere Berichte zu: Pflanzenzelle Protein Signalosom Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit