Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenschutz für Zellen

24.06.2008
Würzburger Forscher liefern besseres Verständnis des DNA-Reparatursystems

Neue Erkenntnisse über den molekularen Mechanismus, der UV-Schäden des Erbguts repariert, liefern Wissenschaftler um Prof. Dr. Caroline Kisker vom Rudolf-Virchow-Zentrum/DFG-Forschungszentrum der Universität Würzburg und der Universitäten Stony Brook University und dem National Institute of Health (USA).

Die Forschungen eröffnen neue Ansätze für die Therapie seltener chronischer Hauterkrankungen und die Prävention von UV-Schäden und damit Hautkrebs. Ihre Ergebnisse beschreiben sie jetzt in der Online-Fachzeitschrift "PLoS Biology".

Sommerzeit - Sonnenzeit: Während es die meisten gerade jede freie Minute nach draußen in die Sonne zieht, sitzen wenige in abgedunkelten Räumen und meiden jeden Sonnenstrahl.

... mehr zu:
»Gendefekt »Protein

Grund ist eine seltene Hautkrankheit, Xeroderma pigmentosum, unter der rund 50 Menschen in Deutschland leiden und die gehäuft bei Kindern auftritt. Weil die Betroffenen Sonnenlicht meiden müssen und in der Mehrheit Kinder sind, werden sie umgangssprachlich als Mondscheinkinder bezeichnet. UV-Strahlen der Sonne lösen bei Mondscheinkindern Entzündungen auf der Haut aus, später entstehen warzenähnliche Gebilde, die sich zu gefährlichen Hautkrebsformen entwickeln können. Das Hautkrebsrisiko ist gegenüber gesunden Menschen 2000fach erhöht.

Die Ursache der seltenen Krankheit ist ein Gendefekt im körpereigenen DNA-Reparatursystem. Das sorgt beim gesunden Menschen dafür, dass durch UV-Strahlen hervorgerufene Schädigungen der Erbsubstanz wieder repariert werden. Jede Hautzelle verfügt über ein solches Reparatursystem, das beim Menschen aus 30 Proteinen besteht. Fällt das System aus, so können Schädigungen langfristig zu Hautkrebs führen. Auch beim gesunden Menschen kann das passieren - ein intensives Sonnenbad mit Sonnenbrand überfordert das System, Schädigungen können nicht mehr repariert werden.

Forscher erproben derzeitig Cremes, die Reparatursysteme aus Bakterien enthalten und stellvertretend Schädigungen beim Patienten reparieren oder als Schutz in Sonnencremes angewendet werden können. Erkrankungen wie Xeroderma pigmentosum können heute allerdings noch nicht geheilt werden. Deshalb untersuchen die Forscher um Caroline Kisker, wie die einzelnen Proteine des Reparatursystems arbeiten. Da das menschliche System viel komplizierter ist, analysieren sie das verwandte Reparatursystem des Bakteriums Thermoplasma acidophilum.

Um den molekularen Mechanismus zu untersuchen, erstellten die Forscher erstmalig Proteinkristalle des so genannten XPD-Proteins, das zum Reparatursystem gehört. Es entwindet die DNA und ist für die Erkennung und Identifizierung von UV-Schäden an der DNA außerordentlich wichtig. Wie XPD arbeitet, war bisher nicht klar. Mithilfe der Röntgenstrukturanalyse konnten die Forscher aus den Kristallen nun ein Modell entwickeln, wie XPD die DNA bindet und repariert. Hat man ein solches Modell, so kann man mittels Computerprogrammen untersuchen, welche Auswirkungen Gendefekte auf die Funktion des Reparatursystems haben. Die Forscher simulierten verschiedene Gendefekte, die alle zur Mondscheinkrankheit führen. Darüber hinaus analysierten sie auch die Auswirkung von Defekten, die zu verwandten Krankheiten, dem Cockayne Syndrom und zu Trichothiodystrophy, führen.

Für alle drei Krankheiten fanden sie verschiedene Mechanismen, die allesamt dazu führen, dass das wichtige XPD-Protein nicht mehr richtig oder gar nicht mehr funktioniert. Entweder erkennt das Protein die Schäden nicht mehr, oder kann sie nicht identifizieren. Die Folge: Das System wird gleich zu Beginn blockiert, die Reparatur kann damit nicht durchgeführt werden. Kenntnisse über den genauen Mechanismus können nun neue Ansätze für die Therapie von Hauterkrankungen liefern.

"Crystal structure of the FeS cluster containing nucleotide excision repair helicase XPD", Stefanie C. Wolski, Jochen Kuper, Petra Hänzelmann, James J. Truglio, Deborah L. Croteau, Bennett Van Houten and Caroline Kisker. Plos, published online june 23, 2008.

Kontakt:

Prof. Dr. Caroline Kisker
Tel.: 0931-201 48300
Email: caroline.kisker@virchow.uni-wuerzburg.de
Sonja Jülich
Leiterin Presse- und Öffentlichkeitsarbeit
Tel.: 0931-201 48714
Mobil: 0174-2118850
Email: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Gendefekt Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise