Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Pförtner in Pflanzenzellen

19.06.2008
Tübinger Forscher identifizieren wichtiges Regulator-Protein für die Stressreaktion von Pflanzen.

Der Arbeitsgruppe von Prof. Klaus Harter am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen ist es gelungen, ein wichtiges Protein bei der Stressreaktion von Pflanzenzellen zu identifizieren. Das Ergebnis erschien am gestrigen 18. Juni in PLoS ONE.

Pflanzen besitzen in den äußeren Zellschichten ihrer Blätter mikroskopisch kleine Atemöffnungen (Schließzellen) zur Steuerung des Kohlendioxid- und Sauerstoffaustauschs sowie zur Regulierung des Wasserhaushalts. Bei drohender Austrocknung und damit einsetzendem Wasserstress kann die Pflanzenzelle ihre Atemöffnungen sehr schnell schließen.

Auch bei Kontakt mit Krankheitserregern wie beispielsweise Bakterien oder Pilzen versucht die Pflanze, solche Eintrittspforten schnell zu verriegeln. Wie die Schließzellen die ankommenden Stresssignale wahrnehmen, deren Informationsgehalt auswerten und anschließend den Vorgang des Schließens einleiten, war bisher weitgehend unklar. Die Erforschung solcher Prozesse ist ein wesentlicher Beitrag zum Verständnis der Stresstoleranz von Pflanzen.

Ein wichtiger Botenstoff in der Pflanze ist Wasserstoffperoxid (H2O2); ein ansteigender H2O2-Spiegel im Zellinnern ist für die Schließzellen ein Stress-Signal und Auslöser des Schließprozesses. Ungeklärt war bisher, welches Molekülsystem in der Lage ist, die Konzentration von H2O2 im Inneren der Schließzelle zu messen.

Klaus Harter und seine Team konnten nun, gemeinsam mit den Arbeitsgruppen von Alfred Meixner, Abteilung Nano-Optics des Physikalisch-Chemischen Instituts der Universität Tübingen und Radhika Desikan, Imperial College London, ein Protein identifizieren, das für die Wahrnehmung des H2O2-Spiegels im Innern der Schließzellen von zentraler Bedeutung ist. Dieses spezifische Protein mit Namen AHK5 kommt nur in Pflanzen vor und zählt zur Gruppe der Histidinkinase-Rezeptoren, die für vielfältige Signalübertragungsprozesse in Pflanzenzellen zuständig sind.

Durch molekulare, biochemische Analysen und räumlich hochauflösende Spektroskopie war es möglich, die Expression des AHK5-Gens in den Schließzellen nachzuweisen und die Lokalisation des AHK5-Proteins in der lebenden Pflanzenzelle sehr genau zu bestimmen. Physiologische Untersuchungen an Pflanzen, die einen Defekt im AHK5-Gen haben, zeigten weiterhin, dass in diesen Mutanten die Schließzellen in diesen Mutanten nur noch sehr eingeschränkt in der Lage sind, sich zu schließen - mit fatalen Folgen für die Toleranz der Pflanze gegenüber Wasserstress oder dem Befall durch Krankheitserreger.

Da pflanzliche Zellen fähig sind, eine Vielzahl von Signalen gleichzeitig wahrzunehmen und zu verarbeiten, ist dieser Befund ein wichtiger Schritt zur Erforschung der Frage, wie Signalintegration bei Höheren Pflanzen funktioniert.

In Zukunft will Harter die Funktion des AHK5-Proteins exakt charakterisieren und dabei das Zusammenspiel mit anderen Elementen der intrazellulären Signalleitung untersuchen: "Unser Verständnis für die hochkomplexen Regel- und Informationsverarbeitungsmechanismen in einer Pflanzenzelle ist auf molekularer Ebene noch immer äußerst rudimentär - da gibt es weiterhin viel Spannendes und Neues zu entdecken."

Diese spannenden Forschungen werden im Rahmen des interdisziplinären Promotionsverbunds "Pflanzliche Histidinkinasen" vom Land Baden-Württemberg und der Universität Tübingen gefördert.

Weiterführende Informationen

Original-Publikation online erschienen am 18. Juni 2008 in PLoS ONE: The Histidine Kinase AHK5 Integrates Endogenous and Environmental Signals in Arabidopsis Guard Cells (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0002491)

Für Nachfragen:

Prof. Klaus Harter, Zentrum für Molekularbiologie der Pflanzen
Tel.: 07071-2972605
klaus.harter@uni-tuebingen.de
Arbeitsgruppe Klaus Harter:
http://www.zmbp.uni-tuebingen.de/PlantPhysiology/ResearchGroups/harter/index.html
Arbeitsgruppe Alfred Meixner: http://www.uni-tuebingen.de/Meixner/leitung.html
Arbeitsgruppe Radhika Desikan: http://www3.imperial.ac.uk/people/r.desikan/research
EBERHARD KARLS UNIVERSITÄT TÜBINGEN
Presse- und Öffentlichkeitsarbeit · Michael Seifert
Wilhelmstr. 5 · 72074 Tübingen
Tel.: 0 70 71 · 29 · 7 67 89 · Fax: 0 70 71 · 29 · 5566
E-Mail: michael.seifert@verwaltung.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.zmbp.uni-tuebingen.de

Weitere Berichte zu: Pflanzenzelle Protein Schließzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik