Neue Zellen im Gehirn – viel hilft nicht immer viel

Sehr lernfähig: die mongolische Wüstenrennmaus Bild: Wikimedia Commons<br>

Das Gehirn ändert sich ein Leben lang. Ständig werden die Verbindungen zwischen den Zellen umorganisiert und neu entstandene Zellen in das Netzwerk integriert. Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation, vom Bernstein Zentrum für Computational Neuroscience und den Universitäten Amsterdam und Bielefeld haben jetzt entdeckt, dass zusätzliche Gehirnzellen nicht immer die Lernfähigkeit erhöhen. Zu viele neue Zellen können das Knüpfen weiterer Verbindungen im Gehirn sogar hemmen (Hippocampus, Online-Publikation, 14. Mai 2008).

Viele kognitive Prozesse sind darauf angewiesen, dass das Gehirn ständig neue Zellen produziert. Wissenschaftler haben deshalb bislang angenommen, dass neue Zellen grundsätzlich die Fähigkeit des Gehirns, sich zu reorganisieren, und damit die Lernfähigkeit erhöhen. Dieser positive Einfluss von neuen Zellen auf die Umstrukturierung des Gehirns hat aber offenbar seine Grenzen. Wie die Wissenschaftler um Markus Butz vom Max Planck-Institut für Dynamik und Selbstorganisation erstmals gezeigt haben, können zu viele neue Zellen die Leistungsfähigkeit des Gehirns sogar einschränken. Das Team untersuchte den Zusammenhang zwischen Zellteilung und der Entstehung neuronaler Verknüpfungen im Hippokampus von Wüstenrennmäusen. Der Hippokampus ist für die Übermittlung von Informationen in das Langzeitgedächtnis zuständig. Er zeichnet sich dadurch aus, dass hier ein Leben lang sehr viel Zellteilung und neuronale Reorganisation stattfindet.

Wenn Wüstenrennmäuse isoliert und mit wenig Anregung großgezogen werden, entwickeln sie Verhaltensstörungen: Sie sind ängstlich und zeigen stereotypes Verhalten. Das geht einher mit anatomischen Anomalien in der Struktur des Gehirns, es werden nicht genügend neue Verbindungen geknüpft. Diese Entwicklung ist auf eine zu starke Zellteilung zurückzuführen. Wie die Wissenschaftler zeigten, lässt sich die strukturelle Reorganisation im Gehirn dieser Mäuse nahezu auf ein Normalmaß steigern, wenn die Zellteilung künstlich verringert wird. Welcher Mechanismus dieser Behinderung neuronaler Reorganisation durch überschüssige neuronale Zellen zu Grunde liegt, untersuchten sie im Computermodell.

Freie neuronale Kontakte sind eine Voraussetzung dafür, dass sich das neuronale Netzwerk umorganisieren kann. Neue Zellen, die gerade erst aus einer Zellteilung hervorgegangen sind, produzieren sogenannte „neurotrophe Faktoren“, die solche Kontakte anziehen. Auf diese Weise werden die neuen Zellen ins Netzwerk integriert. Gibt es aber zu viele neue Zellen, werden alle vorhandenen Kontaktstellen besetzt – eine anschließende Reorganisation zwischen den bereits bestehenden Zellen wird dadurch behindert. Das führt zu einer falschen Organisation des Netzwerks. Eine solche Fehlorganisation, so spekulieren die Forscher, kann auch zu Epilepsie führen.

Originalveröffentlichung:

Butz M., Teuchert-Noodt, G., Grafen, K., van Ooyen, A.
Inverse relationship between adult hippocampal cell proliferation and synaptic rewiring in the dentate gyrus

Hippocampus, Online-Publikation, 14. Mai 2008

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer