Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anstandsdamen bei der Arbeit

13.06.2008
Neueste Struktur-Details zum Chaperon Hsp70 tragen wesentlich zum Verständnis der Proteinfaltung bei.

Die korrekte Faltung von Proteinen (Eiweißen) in der Zelle ist unbedingt nötig, damit sie ihre natürliche dreidimensionale Struktur erhalten. Nur ein Protein, das "in Form" ist, kann auch seine Aufgaben in der Zelle erfüllen.


Abb.1: Der Proteinfaltungszyklus von Hsp70. Schematisch ist Hsp70 im ATP-gebundenen Zustand gezeigt (links). Die Nukleotidbindungsdomäne ist rot gefärbt, die Substratbindungsdomäne gelb. Hsp40 vermittelt die Bindung von Hsp70 an das ungefaltete Protein (hellblau) und hilft bei der Umsetzung von ATP zu ADP (Schritt 1). Der ADP-gebundene Zustand von Hsp70 wird von Hsp110 erkannt (Schritt 2), was zur Freisetzung von ADP führt (Schritt 3). Der Komplex zerfällt in seine Einzelteile und lässt das Proteinsubstrat zur Faltung frei, sobald ATP an Hsp70 bindet (Schritt 4). Hsp70 ist dann bereit für einen weiteren Faltungszyklus. Andreas Bracher/Sigrun Polier, MPI für Biochemie


Abb.2: Die Kristallstruktur des Hsp110-Hsp70-Komplexes. Die Nukleotidbindungsdomäne von Hsp70 ist als rote Oberfläche dargestellt. Der Hsp110-Partner ist in Bänderdarstellung gezeigt (dunkelblau). Andreas Bracher/Sigrun Polier, MPI für Biochemie

Anstandsdamen - Chaperone - der Zelle sorgen dafür, dass Proteine die richtige 3D-Form bekommen oder bei Stress nicht dauerhaft verlieren. In menschlichen Zellen bilden Hsp70-Anstandsdamen und ihre Helfer eine zentrale "Faltungsmaschine".

Wissenschaftler des Max-Planck-Instituts für Biochemie in Martinsried bei München veröffentlichen in der aktuellen Ausgabe des Fachjournals Cell wichtige Ergebnisse zur Struktur der Hsp70-Faltungsmaschine und liefern damit völlig neue Details zum Mechanismus der Proteinfaltung (Cell 133, 13. Juni 2008).
... mehr zu:
»ADP »Protein »Proteinfaltung »Zelle

Mehr als 50% der Trockensubstanz einer Zelle - ein Mensch besteht aus etwa 100 Billionen von diesen Bausteinen - sind Proteine (Eiweiße).

Um ihre lebenswichtigen Aufgaben zu erfüllen, müssen Proteine die richtige 3D-Struktur haben, z.B. um mit ihren Reaktionspartnern spezifische Bindungen eingehen zu können. Die 3D-Struktur eines Proteins wird durch die Abfolge seiner Aminosäurebausteine festgelegt. Allerdings können meist nur kleine Proteine eigenständig ihre endgültige Struktur finden. Größere Proteine neigen dazu, während des spontanen Faltungsvorgangs in Sackgassen zu geraten und dann unkontrolliert zu verklumpen. Dieser Vorgang wird auch Aggregation genannt und in natürlichen Zellen durch die hohe Konzentration an großen Molekülen begünstigt. Eine Fehlsteuerung der Proteinfaltung ist auch eine Ursache für neurodegenerative Erkrankungen, wie die Alzheimer-Krankheit oder die Creutzfeldt-Jakob-Erkrankung. Hier schädigen die Protein-Aggregate - Plaques - das Nervengewebe.

Um eine Aggregation zu verhindern, besitzt die Zelle deshalb Anstandsdamen, die die Faltung der Proteine kontrollieren und dafür sorgen, dass richtige Molekülstrukturen gebildet werden und zueinander finden. Die Anstandsdamen, auch Chaperone genannt, werden in der Zelle verstärkt unter Hitze-Stress erzeugt. Daher werden sie auch als Hitzeschockproteine, abgekürzt Hsp, bezeichnet. Eines der häufigsten Hitzeschockproteine, Hsp70, hat sich während der Evolution in allen einzelligen und mehrzelligen Organismen in sehr ähnlicher Form erhalten und ist für die Zelle lebensnotwendig.

Das Hsp70-Molekül besteht aus zwei Einheiten (Domänen), die miteinander in Wechselwirkung stehen. An die eine Domäne können die Nukleotide ATP oder ADP (Adenosin-Triphosphat/Diphosphat) binden, die an den meisten Zellreaktionen beteiligt sind. Die zweite Domäne besitzt eine Bindestelle für ungefaltetes Protein.

Während Hsp70 im ATP-gebundenen Zustand das Protein schnell bindet und auch wieder loslässt, hält es das Protein im ADP-Zustand fest. Besondere Proteine, die die beiden Zustände ineinander überführen, helfen Hsp70 bei seinen Aufgaben: Hsp40-Proteine werden gebraucht, um ATP in ADP umzuwandeln und Hsp110-Proteine helfen, ADP von Hsp70 abzulösen und dieses damit für ein neues Protein zugänglich zu machen (s. Abb.1). Sigrun Polier konnte in ihrer Doktorarbeit unter Anleitung von Andreas Bracher zeigen, wie Hsp110 genau arbeitet. Zunächst gelang den Martinsrieder Wissenschaftlern die schwierige Aufgabe, den gesamten Protein-Komplex mit Hsp70 und Hsp110 zu kristallisieren. Bei derartig großen Proteinen keine kleine Meisterleistung. Anschließend konnten Polier und Bracher mit Röntgenstrahlen die Struktur des Kristalls aufklären und durch biochemische Analysen ihre Ergebnisse absichern.

Die beiden Wissenschaftler arbeiten in der Forschungsabteilung Zelluläre Biochemie, die unter Leitung von Professor F.-Ulrich Hartl internationale Spitzenforschung auf dem Gebiet der Proteinfaltung leistet. Andreas Bracher kommentiert die außerordentlich erfolgreiche Arbeit der letzten Jahre: "Wir können jetzt endlich erklären, wie Hsp110 die ADP-Ablösung aus Hsp70 beschleunigt." (s. Abb.2). "In dem von uns jetzt gefundenen Komplex umarmt Hsp110 förmlich einen Arm der Nukleotidbindungsdomäne von Hsp70. Dadurch öffnet sich dessen Nukleotid-Bindungstasche, so dass sich das ADP ablösen kann. Die erneute Bindung von ATP an Hsp70 stellt dann den Startpunkt für einen neuen Faltungszyklus dar. Hsp110, das in Zellen aller höheren Organismen gefunden wurde, ist daher entscheidend für effiziente Faltungskatalyse durch die Hsp70 Maschine".

Sigrun Polier kann stolz auf die mühevolle Arbeit des letzten Jahres zurückblicken, das sie häufig in einem Kühlraum mit 4°C verbrachte; die für die Kristallisation des Proteins optimale Temperatur. "Mit unserer Arbeit haben wir jetzt die Funktion des Nukleotid-Austauschfaktors Hsp110 aufgeklärt." Da es bereits Hinweise auf weitere Funktionen dieses wichtigen Hitzeschockproteins in der Zelle gibt, wird ihr die Arbeit nicht ausgehen.

Kristallstrukturen von Proteinen, die in lebensnotwendige Vorgänge der Zelle involviert sind, sind von großer Bedeutung für die biomedizinische Grundlagenforschung. Werden die strukturellen Voraussetzungen für die Proteinfaltung verstanden, können zur Korrektur von Fehlfunktionen, wie neurodegenerative Erkrankungen, Wirkstoffe entwickelt werden. Die neuesten Ergebnisse der Martinsrieder Wissenschaftler sind wichtige Bausteine dabei.

Originalpublikation:
Polier, S., Dragovic, Z., Hartl, U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 13 June 2008.
Kontakt:
Dr. Andreas Bracher
Zelluläre Biochemie
Max-Planck-Institut für Biochemie
bracher@biochem.mpg.de
Eva-Maria Diehl
Öffentlichkeitsarbeit
Max-Planck-Insitut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel 089 8578 2824
diehl@biochem.mpg.de
Weitere Informationen:
Weitere aktuelle Pressemitteilung aus der Abteilung Zelluläre Biochemie, Prof. Dr. F.-Ulrich Hartl

http://www.biochem.mpg.de/news/pressroom/hartl_04_04_2008.pdf

Webpage Forschungsgruppe Dr. Andreas Bracher
http://www.biochem.mpg.de/en/rd/hartl/andreas_bracher/
Webpage der Forschungsabteilung Zelluläre Biochemie
http://www.biochem.mpg.de/hartl/

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Berichte zu: ADP Protein Proteinfaltung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Raumschrott im Fokus

22.05.2018 | Physik Astronomie

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics