Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schimmelpilze: Dunkelheit fördert Sex und Giftstoff-Produktion

13.06.2008
Göttinger Forscher entschlüsseln, wie Licht unterschiedliche zelluläre Prozesse synchronisiert

Die Bildung krebserregender Giftstoffe bei Schimmelpilzen wird durch einen "lichtempfindlichen" Eiweiß-Komplex der Zellen gesteuert. Dabei ist die Produktion von Toxinen an sexuelle Entwicklungsprozesse der Pilze gekoppelt, die in erster Linie in der Dunkelheit ablaufen.

Der molekulare Mechanismus, der dieser Koppelung von Toxinproduktion und Pilzentwicklung bei Aspergillen zugrundeliegt, konnte jetzt von Wissenschaftlern der Georg-August-Universität in Kooperation mit amerikanischen Kollegen entschlüsselt werden. Die Forscher isolierten dazu den sogenannten Velvet-Komplex, der im Dunkeln aktiv ist und durch Lichteinwirkung auseinanderfällt.

Die Forschungsarbeiten an der Georgia Augusta wurden unter der Leitung von Prof. Dr. Gerhard Braus am Göttinger Zentrum für Moleulare Biowissenschaften durchgeführt. Das Wissenschaftsmagazin "Science" veröffentlicht die Arbeitsergebnisse, die für die weitere Erforschung von Schimmelpilzen unter pharmazeutischen Aspekten von Bedeutung ist, in seiner aktuellen Ausgabe vom 13. Juni 2008.

... mehr zu:
»Giftstoff »Schimmelpilz »Toxin

Lebensrettende Antibiotika oder krebserregende Giftstoffe - Schimmelpilze produzieren Freunde und Feinde für die Gesundheit des Menschen. Das Göttinger Wissenschaftlerteam hat für seine Forschungen den genetisch gut manipulierbaren Pilz Aspergillus nidulans ausgewählt - die Aspergillen werden wegen ihrer Form auch "Gießkannenschimmel" genannt. A. nidulans produziert unter Ausschluss von Licht vermehrt den toxischen Stoff Sterigmatocystin. Dieser Giftstoff gehört zu den Aflatoxinen, die als die am stärksten krebserregenden Substanzen auf der Erde gelten. Im Dunkeln durchläuft der im Boden lebende A. nidulans gleichzeitig den sexuellen Entwicklungszyklus, was zur Bildung von Fruchtkörpern für die Fortpflanzung führt. Unter Lichteinfluss werden dagegen asexuelle Sporen und weniger Toxin produziert. Wie Toxinproduktion und Pilzentwicklung miteinander gekoppelt sind, war bislang unbekannt. Die Arbeitsgruppe von Prof. Braus hat nun aufgeklärt, wie diese unterschiedlichen zellulären Prozesse durch Licht synchronisiert werden.

Die Wissenschaftler haben dazu einen besonderen Eiweiß-Bestandteil der Zelle, das Velvet- oder auch "Samt"-Protein, gentechnisch so mit einer Markierung versehen, dass damit gleichzeitig Interaktionspartner dieses Proteins "gereinigt" und identifiziert werden konnten. Mit dem Wechselspiel dieser Komponenten konnten die Wissenschaflter zeigen, dass das Velvet-Protein im Dunkeln jeweils einen zentralen Regulator der Toxinproduktion und der sexuellen Entwicklung im Zellkern des Pilzes wie eine Brücke zu einem aktiven Komplex verbindet. Licht verhindert im Gegenzug, dass das Protein in den Kern eindringen kann und unterbindet damit die Komplexbildung. "Fehlt das Velvet-Protein vollständig, dann zeigen die Pilzkolonien der Aspergillen ein samtähnliches Aussehen, können nicht mehr zwischen Licht und Dunkelheit unterscheiden und produzieren kaum Toxin", erläutert Prof. Braus.

"Da Pilze eine Vielzahl biologischer Wirkstoffe produzieren, ist das Verständnis dieser Zusammenhänge eine wichtige Voraussetzung, um diese Pilzprodukte für Anwendungen in Medizin und Pharmazie nutzbar zu machen", betont der Wissenschaftler vom Institut für Mikrobiologie und Genetik der Georg-August-Universität. Prof. Braus forscht mit seinem Team am Göttinger Zentrum für Molekulare Biowissenschaften und am DFG Forschungszentrum für Molekularphysiologie des Gehirns (CMPB). Die aktuellen Arbeiten wurden in Kooperation mit Experten der University of Wisconsin-Madison (USA) durchgeführt und von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Originalveröffentlichung:
Özgür Bayram et.al: VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism, Science, 320/5882, 13. Juni 2008
Kontaktadresse:
Prof. Dr. Gerhard Braus
Georg-August-Universität Göttingen
Biologische Fakultät
Institut für Mikrobiologie und Genetik
Grisebachstraße 8, 37077 Göttingen
Telefon (0551) 39-3771, Fax (0551) 39-3330
e-mail: gbraus@gwdg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.gwdg.de/~molmibio

Weitere Berichte zu: Giftstoff Schimmelpilz Toxin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie