Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Uni Mainz an neuem DFG-Sonderforschungsbereich auf dem Gebiet der Immunreaktion beteiligt

12.06.2008
Laboratorien aus Würzburg, Berlin und Mainz untersuchen die Genregulation spezialisierter T-Zellen

T-Zellen spielen für das Immunsystem eine ganz wesentliche Rolle.

Unterschiedliche T-Zellen nehmen dabei verschiedene Aufgaben in der Immunabwehr wahr. Versagt dieses Abwehrsystem, kann es zu Krankheiten wie Allergien und Autoimmunerkrankungen kommen. Die Deutsche Forschungsgemeinschaft (DFG) hat nun ein Forschungsvorhaben von Laboratorien aus Würzburg, Berlin und Mainz bewilligt, das untersucht, wie die genetische Kontrolle die Entwicklung und Funktion verschiedener T-Zellen bestimmt.

"Wir wollen feststellen, wie die einzelnen T-Zellen funktionieren und wie man ihre Genregulation direkt beeinflussen kann, damit letztendlich neue Therapieverfahren entwickelt werden können", erläutert Prof. Dr. Edgar Schmitt vom Institut für Immunologie der Johannes Gutenberg-Universität Mainz. Die DFG richtet den neuen Sonderforschungsbereich Transregio 52 "Transkriptionelle Programmierung individueller T-Zell-Populationen" zum 1. Juli 2008 ein und stellt dafür zunächst für 4 Jahre etwa 12 Millionen Euro zur Verfügung.

T-Zellen sind weiße Blutkörperchen, die im Knochenmark gebildet werden und im Thymus ausreifen. Sie können Fremdstoffe erkennen und auf vielfältige Weise dagegen Abwehrmaßnahmen ergreifen, während gleichzeitig eine spezialisierte T-Zell-Population autoaggressive Immunreaktionen gegen eigene Körperzellen aktiv verhindert. Diese sogenannten natürlich vorkommenden regulatorischen T-Zellen werden in der Arbeitsgruppe um Edgar Schmitt intensiv erforscht.

"Wir werden im Rahmen des Transregio-SFB untersuchen, wie die Entwicklung zu einer spezialisierten T-Zelle verläuft und wie diese ihre Funktion ausübt. In Mainz schauen wir uns die regulatorischen T-Zellen genauer an, zusammen mit den anderen Standorten werden aber alle Subpopulationen von T-Zellen erforscht", so Schmitt. Das Augenmerk liegt darauf, wie genau die genetischen Informationen reguliert werden, damit diese Zellen gezielt ihre Funktion ausüben. Wäre dies bekannt, könnten zum Beispiel autoaggressive T-Zellen abgeschaltet werden; andere, regulatorische Zellen könnten so beeinflusst werden, dass eine Autoimmunerkrankung verhindert wird. "Anhand erster Daten können wir bereits Therapieansätze zur gezielten Beeinflussung asthmatischer Erkrankungen aufzeigen", erklärt Schmitt.

Untersuchungen seiner Arbeitsgruppe ergaben, dass zyklisches Adenosinmonophosphat (cAMP) eine zentrale Funktion für die suppressiven Eigenschaften von natürlich vorkommenden regulatorischen T-Zellen hat. Diese Zellen besitzen hohe Konzentrationen an cAMP und übertragen es durch Kanäle - sogenannte "Gap Junctions" - auf Ziel-Zellen. "Diese Ziel-Zellen werden dadurch stark inhibiert und können somit nicht mehr als zentrale Antreiber einer autoaggressiven oder allergischen Immunreaktion wie Asthma fungieren." Als Gegenspieler dieser Suppression haben Schmitt und seine Mitarbeiter sogenannte Phosphodiesterasen (PDE) ausgemacht. Diese Enzyme bauen cAMP ab und arbeiten so der Inhibition durch die regulatorischen T-Zellen entgegen. "Aus diesem Grund können wir durch die gezielte Hemmung dieser PDEs in Maus-Modellen eine wesentliche Abschwächung des Asthmas erreichen."

Die Intensivierung und Konzentrierung der wissenschaftlichen Forschung in Deutschland auf die transkriptionelle Kontrolle der Genexpression von T-Lymphozyten wird, so hoffen die beteiligten Wissenschaftler, dazu beitragen, zentrale Schaltstellen einer Immunantwort aufzudecken. Die wichtigsten Faktoren bei der Transkriptionskontrolle in T-Zellen sollen identifiziert, ihre Funktion in Mausmodellen in vivo entschlüsselt und die Wege für eine gerichtete Modulation der Transkription erforscht werden. Die Einrichtungen aus Würzburg, Mainz und Berlin werden sich dazu mit unterschiedlichen Expertisen immunologischen, zell- und molekularbiologischen Aspekten der T-Zell-Biologie widmen. Aus Mainz sind daran verschiedene Einrichtungen und Forscher beteiligt: Dr. Sabine Ohlemacher und HD Dr. Helmut Jonuleit (Dermatologie), PD Dr. Kerstin Steinbrink (Dermatologie), Prof. Dr. Dr. Susetta Finotto (I. Medizinische Klinik), Prof. Dr. Ari Waisman (I. Medizinische Klinik), HD Dr. Kurt Reifenberg (Zentrale Versuchstiereinrichtung, CLAF), Dr. Jürgen Siebler und Prof. Dr. Markus Neurath (I. Medizinische Klinik) sowie Dr. Tobias Bopp und Prof. Dr. Edgar Schmitt (Institut für Immunologie).

Sprecher des SFB/Transregio 52 ist Prof. Dr. Edgar Serfling (Universität Würzburg, Pathologisches Institut), die stellvertretenden Sprecher sind Prof. Dr. Richard Kroczek (Berlin, Robert Koch Institut) und Prof. Dr. Edgar Schmitt für die Uni Mainz.

Kontakt und Informationen:
Prof. Dr. Edgar Schmitt
Institut für Immunologie
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-33228
Fax +49 6131 39-35688
E-Mail: eschmitt@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Medizin/immunologie/de/

Weitere Berichte zu: Autoimmunerkrankung Immunreaktion PDE T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise