Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Membranproteine künstlich hergestellt

10.06.2008
Bakterielle Produktionsmaschinerie im Reagenzglas imitiert/Selektive Markierung großer Proteine für NMR

Die Proteine in Zellmembranen gehören, trotz ihrer großen Bedeutung als Schnittstelle zwischen der Zelle und ihrer Umgebung, zu den bisher am wenigsten erforschten Eiweißen. Der Grund dafür ist eine umhüllende Schicht aus Fettmolekülen sowie ihre Unlöslichkeit in Wasser. Beides erschwert ihre Untersuchung mit den bisher gebräuchlichen biophysikalischen Methoden.

Insbesondere ist jedoch die Herstellung von Membranproteinen äußerst problematisch, denn man kann sie oft nicht, wie die wasserlöslichen Proteine, von Bakterien herstellen lassen. Biochemikern am Institut für Biophysikalische Chemie der Universität Frankfurt ist es nun gelungen, eine neue Methode zur Herstellung von Membranproteinen zu etablieren. Damit lassen sich die Eiweiße in genügend großen Mengen für eine Untersuchung herstellen. Die Frankfurter Forscher erwarten wichtige Impulse für die Pharmaforschung, denn etwa 60 Prozent aller Medikamente wirken auf Membranproteine.

Der Kern der Technik beruht auf dem Nachbau der bakteriellen Produktionsmaschinerie im Reagenzglas, wie die Forscher in den "Proceedings der National Academy of Sciences" berichten. Das als zellfreie Proteinsynthese bekannte Verfahren wurde bereits in den 1980er Jahren entwickelt, aber immer nur für wasserlösliche Eiweiße angewandt. Dr. Frank Bernhard vom Institut für Biophysikalische Chemie konnte nun zeigen, dass sich dieses Verfahren hervorragend zur Herstellung sehr vieler Membranproteine verwenden lässt.

... mehr zu:
»Membranprotein »Protein

Die Methode erlaubt aber auch zusätzlich ganz neue Wege bei der Ermittlung der dreidimensionalen Struktur von Membranproteinen zu gehen. So haben Biophysiker in den Arbeitsgruppen von Prof. Volker Dötsch (Institut für Biophysikalische Chemie, Principal Investigator des Exzellenzclusters Macromolecular Complexes) und Prof. Peter Güntert (Institut für Biophysikalische Chemie und Frankfurt Institute for Advanced Studies, FIAS) ein neues Verfahren entwickelt, mit dessen Hilfe auch größere Membranproteine zukünftig leichter untersucht werden können.

Diese Methode beruht darauf, bestimmte Bereiche der Proteine für die Untersuchung mittels kernmagnetischer Resonanzspektroskopie (NMR) selektiv sichtbar zu machen. Voraussetzung hierfür ist der Einbau bestimmter NMR-aktiver Isotope. Das neu entwickelte Verfahren nutzt die große Flexibilität der zellfreien Proteinsynthese aus, nur bestimmte Bausteine der Eiweiße mit diesen NMR-aktiven Isotopen zu markieren, den Rest aber unmarkiert zu lassen.

So lassen sich jetzt auch größere Membranproteine untersuchen, deren NMR Analyse bisher meist durch zu große Komplexität der Spektren behindert wurde. Mithilfe dieser Methode konnten nun erste Strukturinformationen eines Teils des Membranproteins Presenilin-1 erhalten werden, das eines der Schlüsseleiweiße bei der Entstehung der Alzheimerschen Krankheit ist. Weitere Anwendungen der entwickelten Technik auf die Strukturanalyse von zentralen Eiweißen aus dem menschlichen Herz-Kreislaufsystem werden derzeit am Institut für Biophysikalische Chemie erprobt.

Informationen
Prof. Volker Dötsch, Tel.: (069) 798-29631, vdoetsch@em.uni-frankfurt.de, Institut für Biophysikalische Chemie, Principal Investigator Exzellenzcluster Macromolecular Complexes, Campus Riedberg, Universität Frankfurt.

Die GOETHE-UNIVERSITÄT ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 34 seit 2000 eingeworbenen Stiftungsprofessuren nimmt die GOETHE-UNI den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die GOETHE-UNI als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.cef-mc.de
http://www.biophyschem.uni-frankfurt.de/AK_Doetsch

Weitere Berichte zu: Membranprotein Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE