Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuronaler Code für das Kurzzeitgedächtnis

06.06.2008
Wissenschaftler aus Berlin und München haben herausgefunden, wie Informationen aus dem zellulären Kurzzeitgedächtnis ausgelesen werden können

Wenn das Gehirn Informationen verarbeitet, senden die Nervenzellen in schneller Folge elektrische Impulse in einem räumlichen und zeitlichen Muster. Diese neuronale Informationsweitergabe spielt sich im Bereich weniger Millisekunden ab und repräsentiert dennoch Informationen, die über längere Zeiträume erlebt oder aufgenommen wurden.

Welche zellulären Mechanismen einer solchen Komprimierung von Ereignisfolgen zu Grunde liegen können, haben nun Wissenschaftler der Bernstein Zentren für Computational Neuroscience anhand von elektrophysiologischen Experimenten und theoretischer Modellierung zeigen können. Die Arbeiten von Christian Leibold (Ludwig-Maximilians-Universität München), Richard Kempter (Humboldt-Universität zu Berlin), Dietmar Schmitz (Charité, Universitätsmedizin Berlin) und ihren Kollegen wurden in zwei aktuellen Publikation in den wissenschaftlichen Zeitschriften "Neural Computation" und "Proceedings of the National Academy of Sciences of the United States of America" veröffentlicht.

"Synaptische Fazilitierung" heißt der zelluläre Mechanismus, von dem angenommen wird, dass er dem Kurzzeitgedächtnis zu Grunde liegt. Wird nacheinander mehrmals ein Signal von einer Zelle zur nächsten übermittelt, verbessert sich die Wirksamkeit der Synapse, der Verbindungsstelle zwischen den Zellen. Auch wenn diese Verstärkung der Synapse nicht von Dauer ist, so wird sie doch ein paar Sekunden beibehalten - die Synapse "merkt" sich Ereignisse. "Erinnerungen, die so in der Synapse gespeichert sind, müssen vom Rest des Gehirns auch wieder ausgelesen werden", erklärt Leibold. Wie dies geschieht, diskutieren Leibold und seine Kollegen am Beispiel der räumlichen Navigation der Ratte.

Kennt sich die Ratte in einer Umgebung aus, hat sie für jeden Aufenthaltsort so genannte "Ortszellen". Sind Beispielsweise Ortszellen der Gebiete A und B aktiv, so befindet sich die Ratte im Schnittpunkt dieser beiden Gebiete. So lange die Ratte sich bewegt, unterliegen die Ortszellen im Hippocampus einer gemeinsamen Oszillation. Sie senden Signale bevorzugt im so genannten "Theta-Rhythmus" - vergleichbar mit Menschen, die nach einem Konzert im Takt klatschen. Dieser Rhythmus dient als Referenz, um den genauen Zeitpunkt neuronaler Entladungen zu messen. Je länger sich die Ratte an einem bestimmten Ort befindet, desto mehr weicht der Takt der betreffenden Ortszellen vom Theta-Rhythmus ab. So "weiß" die Ratte in jedem Augenblick nicht nur wo sie sich befindet, sondern auch wie lange sie sich schon in welchem Bereich aufhält.

Wie die Wissenschaftler aus Berlin und München zeigen konnten, lässt sich diese Phasenverschiebung durch "Synaptische Fazilitierung" erklären. Während die Ratte durch ein Ortsfeld läuft, erhält die betreffende Zelle im Hippocampus mehrmals Signale aus einer vorgeschalteten Gehirnregion. Die Übertragungseffizienz der Synapse steigt mit jedem Signal an und die Stärke des Signals nimmt zu. Durch die zunehmende Signalstärke feuert die Hippocampus-Zelle ihre neuronalen Impulse etwas schneller als zuvor und gerät damit aus dem Takt.

Wenn sich die Ratte anschließend von ihrem Spaziergang ausruht oder frisst, prägt sie sich - unbewusst - den durchlaufenen Pfad noch mal ein. In solchen Ruhephasen werden die besuchten Orte in umgekehrter Reihenfolge wieder abgespielt. Auch diesem "reverse replay" liegt möglicherweise synaptische Fazilitierung zu Grunde. Noch mehrere Sekunden nachdem die Ratte die Strecke von A über B nach C durchlaufen hat, enthalten die Synapsen Spuren dieser "Erinnerung" - die Synapsen der Ortszelle C sind am stärksten, die der Ortszelle A sind schon fast auf Normalniveau abgeklungen. Während die Ratte sich ausruht, werden die Ortszellen angeregt und geben diese "Erinnerung" Preis. Sie geben Signale entsprechend unterschiedlicher Signalstärke weiter. Auch hier wirkt sich die Signalstärke auf den genauen Zeitpunkt des nächsten Signals aus.

Diese Konvertierung von Signalstärke in eine zeitliche Kodierung wird durch neuronale Oszillationen unterstützt. In den Ruhephasen liegt allerdings kein Theta-Rhythmus vor, sondern es treten schnelle Feldpotential-Schwankungen auf, genannt "sharp wave ripples". Schon lange nimmt man an, dass sharp wave ripples eine wichtige Rolle bei der Festigung von Erinnerungen spielen. Wie während der sharp waves Erinnerungen aus dem Kurzzeitgedächtnis der Synapsen ausgelesen werden können, zeigt nun die Arbeit der Wissenschaftler aus Berlin und München.

Originalveröffentlichungen:
Leibold C., Gundlfinger A., Schmidt R., Thurley K., Schmitz D. und Kempter R. (2008).
Temporal compression mediated by short-term synaptic plasticity.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4417-22. DOI: 10.1073/pnas.0708711105
Thurley K., Leibold C., Gundlfinger A., Schmitz D. und Kempter R. (2007).
Phase precession through synaptic facilitation.
Neural Comput. 2008 May;20(5):1285-324. DOI: 10.1162/neco.2008.07-06-292
Weitere Informationen:
Prof. Dr. Christian Leibold
Abteilung Biologie II- Neurobiologie
Ludwig-Maximilians-Universität München
Dr. Richard Kempter
Institut für Biologie - Theoretische Biologie
Humboldt-Universität zu Berlin
Prof. Dr. Dietmar Schmitz
Neuroscience Research Center
Charité Campus Mitte
Weitere Informationen:
http://www.nncn.de
http://sci.bio.lmu.de/neuralcomputation/ - Homepage Christian Leibold
http://itb.biologie.hu-berlin.de/~kempter/index.html - Homepage Richard Kempter
http://www.charite.de/schmitzlab/ - Homepage Dietmar Schmitz

Katrin Weigmann | idw
Weitere Informationen:
http://www.bernstein-zentren.de

Weitere Berichte zu: Kurzzeitgedächtnis Ortszelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zwei neue Riesen aus Madagaskar
23.05.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie