Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Myelin macht Reize schnell: Mechanismen der Myelinbildung im zentralen Nervensystem aufgeklärt

04.06.2008
Untersuchungen der Abteilung Molekulare Zellbiologie im Journal of Cell Science und Journal of Cell Biology publiziert

Damit Nervenzellen effizient Informationen über weite Distanzen übermitteln können, hat sich bei höheren Organismen die sogenannte saltatorische Erregungsleitung entwickelt. Diese wird ermöglicht, indem die zur Reizweiterleitung spezialisierten axonalen Fortsätze der Nervenzellen in bestimmten Abständen von Myelin - einer Art Isolierschicht - umgeben sind.

Im Falle von Erkrankungen wie Multipler Sklerose oder Leukodystrophien ist die Bildung beziehungsweise die Funktion des Myelins gestört. Die molekularen Mechanismen der Myelinbildung waren bisher noch weitgehend unverstanden. Zwei Arbeiten aus der Abteilung Molekulare Zellbiologie des Fachbereichs Biologie an der Johannes Gutenberg-Universität Mainz leisten nun einen wesentlichen Beitrag zum Verständnis dieser komplexen zellulären Prozesse.

Vereinfacht betrachtet springen bei der saltatorischen Erregungsleitung weitergeleitete Signale von einem nicht myelinisierten Bereich, dem Ranvierschen Schnürring, zum nächsten, was die Geschwindigkeit der Weiterleitung enorm erhöht. Im zentralen Nervensystem entsteht Myelin dadurch, dass Oligodendrozyten, ein bestimmter Typ von Gehirnzellen, ihre Zellfortsätze mehrfach um die Axone der Nervenzellen wickeln und einen kompakten Stapel von Zellmembranen ausbilden. Die Wissenschaftler aus der Abteilung Molekulare Zellbiologie unter der Leitung von Univ.-Prof. Dr. Jacqueline Trotter konnten nun zeigen, welche Mechanismen zur Bildung einer intakten Myelinscheide beitragen und wie die Nervenzellen Ort und Zeitpunkt der Myelinproduktion steuern.

... mehr zu:
»Myelin »Nervensystem »Nervenzelle

Zum einen wurde in einer im Fachmagazin Journal of Cell Science veröffentlichten Arbeit gezeigt, dass ein endozytischer Recycling-Zyklus von Myelinproteinen für die spezifische Ausbildung von Myelindomänen von Bedeutung ist. Dabei werden die Proteine zunächst zur Zelloberfläche transportiert. Von dort werden sie durch Endozytose wieder in die Zelle aufgenommen, um in verschiedene Membrandomänen sortiert zu werden, die anschließend wieder an die Zelloberfläche gelangen. Dieser "Membranumbau" scheint notwendig für die korrekte Bildung einer intakten Myelinscheide.

Weiterhin wurde im renommierten Journal of Cell Biology ein neuer Signalweg vorgestellt, der von der Interaktion eines neuronalen und eines oligodendroglialen Oberflächenmoleküls über die Aktivierung eines für die Myelinisierung essentiellen Signalmoleküls letztlich zu der lokalen Translation eines Hauptmyelinproteins im Oligodendrozyten führt. Diese Ergebnisse beschreiben eine Möglichkeit der Nervenzelle zu beeinflussen, an welchen Stellen oder zu welchem Zeitpunkt Myelin synthetisiert werden soll, und verdeutlicht die entscheidende Rolle beider Zelltypen für die Ausbildung der Grundlage einer effizienten Reizweiterleitung im zentralen Nervensystem.

Die Arbeiten wurden durch das Schwerpunktprogramm "Zellpolarität" der DFG, Mittel der EU (STREP "Signalling and Traffic") und der European Leukodystrophy Association sowie durch das DFG-Graduiertenkolleg "Entwicklungsabhängige und krankheitsinduzierte Modifikationen im Nervensystem" gefördert.

Veröffentlichungen:
Christine Winterstein, Jacqueline Trotter, and Eva-Maria Krämer-Albers (2008). Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. Journal of Cell Science 121 (6), 834-842.

Robin White, Constantin Gonsior, Eva-Maria Krämer-Albers, Nadine Stöhr, Stefan Hüttelmaier and Jacqueline Trotter (2008). Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. Journal of Cell Biology 181 (4), 579-586.

Kontakt und Informationen:
Univ.-Prof. Dr. Jacqueline Trotter
Fachbereich Biologie
Abteilung Molekulare Zellbiologie
Johannes Gutenberg-Universität Mainz
Tel. +49 (0) 6131 39-20263
Fax +49 (0) 6131 39-23840
E-Mail: trotter@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie/index.php

Weitere Berichte zu: Myelin Nervensystem Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie