Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln für Functional Food: Milcheiweiß-Hülle schützt probiotische Keime

27.05.2008
Lebensmittel sollen schmecken und satt machen - aber auch gesund sein. Um der Natur nachzuhelfen, werden immer mehr Produkte mit Vitaminen, Pflanzenextrakten oder probiotischen Keimen angereichert.

Der Gesundheitsnutzen von letzteren ist jedoch umstritten. Denn viele Probiotika erreichen ihren Bestimmungsort, den Darm, nicht lebend: Säuren, die während der Lagerung im Lebensmittel vorhanden sind, zerstören einen Teil der gesunden Bakterien - nach dem Verzehr setzt ihnen noch die Magensäure zu. Forscher des Wissenschaftszentrums Weihenstephan haben jetzt eine neue Technik zur Mikroverkapselung entwickelt, um Probiotika besser in funktionellen Lebensmitteln einzusetzen.

Bisher werden die helfenden Keime gefroren oder getrocknet, bevor sie einem Joghurt als Pulver in hochkonzentrierter Form zugegeben werden. Doch noch vor Ablauf des Haltbarkeitsdatums ist die Zahl aktiver probiotischer Keime in den Bechern und Fläschchen oft stark reduziert. Die Lösung des Problems: Das Einpacken der Keime in eine schützende Hülle. So genannte Mikrokapseln machen eine räumlich und zeitlich gesteuerte Freisetzung der verpackten Stoffe möglich ("controlled release").

Bei Medikamenten und Pflanzenschutzmitteln hat die Verkapselung bereits Tradition. Am Einsatz im Lebensmittelbereich wird intensiv geforscht. Denn Mikrokapseln für den menschlichen Verzehr müssen besonderen Ansprüchen genügen: Sie sollen geschmacksneutral und für den täglichen Genuss geeignet sein. Außerdem müssen sie glatt und so klein sein, dass sie von der Zunge "unentdeckt" bleiben.

... mehr zu:
»Enzym »Mikrokapsel

Prof. Ulrich Kulozik und sein Mitarbeiter Dipl.-Ing. Thomas Heidebach von der Abteilung Technologie des Zentralinstituts für Ernährungs- und Lebensmittelforschung (ZIEL) am Wissenschaftszentrum Weihenstephan haben solche lebensmitteltauglichen Mikrokapseln entwickelt. In einem groß angelegten, aus öffentlichen Mitteln geförderten Forschungsprojekt haben sie nicht nur ein passendes Hüllmaterial gefunden, sondern gleich auch das geeignete Herstellungsverfahren: Die Forscher setzen Enzyme als natürliche Biokatalysatoren ein, um probiotische Keime in das Hüllmaterial einzupacken und so vor Verfall und Magensäure zu schützen.

Als Material verwenden die Lebensmittelforscher das Milchprotein Casein, da es sich gut mit anderen Stoffen mischt und auch geschmacklich für den Einsatz in Milchprodukten geeignet ist. Außerdem gibt es bei diesem Naturstoff keine Probleme mit der Verbraucherakzeptanz beim Einsatz in Joghurt und Molkedrinks. Um das Casein in brauchbare Mikrokapseln zu verwandeln, nutzen die Forscher die Lebensmittelchemie: Zuerst mischen sie die probiotischen Keime mit dem Milcheiweiß, das als Hüllstoff dienen soll. Nach Zugabe des Enzyms Transglutaminase und der Herstellung einer Wasser-in-Öl-Emulsion bildet sich ein Casein-Gel, in dem die gesunden Bakterien von einem dichten Netz umschlossen sind.

Die durchschnittlich 150 Mikrometer kleinen Kügelchen werden anschließend durch Schleudern abgetrennt und gewaschen. Ein Gramm Mikrokapseln enthält dann rund fünf Milliarden lebende Keime. Sowohl die Lagerung für die Dauer der Haltbarkeit des Joghurts, als auch die Magensäure kann diesen gefüllten Proteinkapseln nichts anhaben. Erst die im Dünndarm vorhandenen Enzyme spalten die Kapseln - und lassen die Keime dort frei, wo sie sich nützlich machen sollen. Das neue Verfahren wird nun in Kooperation mit der Lebensmittelindustrie zur Marktreife weiterentwickelt.

Die wirtschaftliche Bedeutung der Mikroverkapselung im Lebensmittelbereich ist in den letzten Jahren stetig gestiegen: Der Umsatz mit probiotischen Milchfrischerzeugnissen hat sich in Deutschland von 1996 bis 2004 auf 485 Millionen Euro versechsfacht. In Zukunft werden nicht nur Milchprodukte, sondern auch Cerealien, Wurstwaren, Fertiggerichte und Nahrungsergänzungsmittel mit probiotischen Keimen angereichert werden. Dafür werden neuartige Mikroverkapselungssysteme benötigt.

Mit ihren Entwicklungen, die allen Unternehmen uneingeschränkt zur Verfügung stehen, leisten die Weihenstephaner Wissenschaftler einen wichtigen Beitrag zur Förderung auch kleiner und mittlerer Unternehmen, die meist keine eigenen Forschungsabteilungen unterhalten.

Kontakt:
Prof. Dr.-Ing. Ulrich Kulozik
Dipl.-Ing. Thomas Heidebach
Lehrstuhl für Lebensmittelverfahrenstechnik und Molkereitechnologie
Technische Universität München
85354 Freising-Weihenstephan
Tel: 08161 / 71 - 5317
E-Mail: thomas.heidebach@wzw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tu-muenchen.de/
http://www.weihenstephan.de/blm/lmvt/index.html

Weitere Berichte zu: Enzym Mikrokapsel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie