Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Wissenschaftler entdecken neuen Mechanismus der Auflösung von Proteinaggregaten

23.05.2008
Der Arbeitsgruppe um Prof. Bernd Bukau vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) ist es gelungen, erstmals auf molekularer Ebene zu verstehen, wie eine Zelle stressbedingte Proteinaggregate wieder auflösen kann

Um biologische Funktionen in der Zelle erfüllen zu können, muss jedes neusynthetisierte Protein seine einzigartige dreidimensionale Struktur annehmen. Zellulärer Stress oder Mutationen stören die korrekte Strukturbildung, die sogenannte native Proteinfaltung, und können so die Ablagerung schädlicher, unlöslicher Proteinaggregate hervorrufen.

Proteinaggregation ist ein zentrales Problem z.B. bei Temperaturerhöhungen, denen Zellen ausgesetzt sind, und bei der Entstehung neurodegenerativer Krankheiten, wie z.B. Parkinson, Alzheimer oder Prionenerkrankungen. Der Arbeitsgruppe um Prof. Bernd Bukau vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) ist es gelungen, erstmals auf molekularer Ebene zu verstehen, wie eine Zelle stressbedingte Proteinaggregate wieder auflösen kann.

Das zelluläre System der Proteinqualitätskontrolle, das aus molekularen Faltungshelfern, sogenannten Chaperonen, und Proteasen besteht, sorgt für die Reparatur bzw. den Abbau von aggregierten Proteinen. Das Labor von B. Bukau untersucht das Phänomen der Proteindisaggregation am Beispiel von ClpB, einem Chaperon aus dem Darmbakterium Escherichia coli. ClpB ist ein energieabhängiges, ringförmiges Protein mit einem zentralen, durchgängigen Kanal und besitzt die einzigartige Fähigkeit, in Kooperation mit einem weiteren Chaperonsystem Proteinaggregate vollständig aufzulösen und die einzelnen Proteine wieder in den nativen Zustand zurückzuführen.

... mehr zu:
»Aggregat »ClpB »Protein »Proteinaggregat

In früheren Arbeiten der Arbeitsgruppe konnte eindrucksvoll gezeigt werden, dass ClpB einzelne Proteinmoleküle aus dem Aggregat herauszieht und diese dann energieabhängig durch seinen zentralen Kanal fädelt, ein Mechanismus, der als Translokation bezeichnet wird.

Lange wurde Disaggregation an Modellproteinen untersucht, die sich unter Stressbedingungen vollständig entfalten. Viele zelluläre Proteine sind jedoch komplex aufgebaut und bestehen aus mehreren Faltungsdomänen, die bei stressbedingter Verklumpung gemischte Aggregate ausbilden, in denen fehlgefaltete und native Domänen gleichermaßen vorkommen. Das Schicksal der nativen Domänen während der Aggregatauflösung war bis dato unverstanden. In einer neuen Studie, die in dieser Woche in der online-Ausgabe von Nature Structural Molecular Biology veröffentlicht wurde (DOI-Nr. 10.1038/nsmb.1425), ist es den Autoren nun gelungen, den Mechanismus der ClpB-vermittelten Auflösung solch gemischter, physiologisch relevanter Aggregate aufzuklären.

ClpB reaktiviert gemischte Aggregate schnell und effizient. Dabei erkennt ClpB nur den fehlgefalteten Anteil eines Proteins und fädelt diesen in seinen zentralen Kanal ein, während die stabilen Domänen nicht angegriffen werden. Die äußerst rasche Reaktivierung eines aggregierten Proteins, dessen fehlgefaltete Domäne an beiden Enden durch eine stabile Domäne blockiert ist, zeigt zum ersten Mal, dass die Auflösung von Proteinaggregaten durch ClpB nicht von frei zugänglichen Enden der verklumpten Proteine abhängig ist, sondern an exponierten, internen Segmenten in fehlgefalteten Strukturen beginnen kann.

Die veröffentlichten Ergebnisse zeigen die Anpassung des ClpB-Chaperonsystems an seine zelluläre Aufgabe. ClpB katalysiert die für eine Zelle lebensnotwendige Auflösung und Reaktivierung aggregierter Proteine und ist spezialisiert auf die Erkennung und Entfaltung fehlgefalteter Domänen; die Translokation nativer Domänen würde dabei eine unnötige Energieverschwendung darstellen. Die Prozesse und Mechanismen, die zu Proteinaggregation und deren Umkehr führen, sind von medizinischer Relevanz, da Proteinaggregation mit vielen neurodegenerativen Krankheiten assoziiert ist. In Säugern wurde bis jetzt kein ClpB-Homolog identifiziert, jedoch gibt es zahlreiche Hinweise auf Disaggregation auch in höheren Eukaryonten. Es ist nun zu prüfen, ob die Disaggregation dieser Proteine einem Chaperon-vermittelten, ähnlich dem hier in Bakterien beschriebenen Mechanismus folgt.

Pressekontakt:
Dr. Ralf Tolle
Zentrum für Molekulare Biologie
der Universität Heidelberg (ZMBH)
Im Neuenheimer Feld 282
69120 Heidelberg
Tel. 06221 546850, Fax 545507
r.tolle@zmbh.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
Tel. 06221 542310, Fax 542317
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de/presse

Weitere Berichte zu: Aggregat ClpB Protein Proteinaggregat

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften