Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Molekül räumt auf: Neue Chancen im Kampf gegen bakterielle Infektionen

21.05.2008
Forscher am Zentrum für Medizinische Biotechnologie an der Universität Duisburg-Essen haben ein Aufräumkommando der Zelle untersucht und berichten darüber in der neuesten Ausgabe (21. Mai) des angesehenen Wissenschaftsmagazins Nature. Im Mittelpunkt steht das Molekül DegP, das defekte Proteine erkennt und in seinem Reaktionszentrum repariert oder vernichtet. Intakte Proteine werden vom Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort transportiert.

Proteine vermitteln alle lebenswichtigen Prozesse in der Zelle. Deshalb betreibt die Zelle einen erheblichen Aufwand, um ihre Eiweiße in der richtigen Form, zum richtigen Zeitpunkt und in der geforderten Menge zu produzieren.

Auch Proteine, die bereits im Einsatz sind, müssen ständig auf Ihre Funktionsfähigkeit hin überwacht werden. Defekte Proteine stellen nämlich eine tödliche Gefahr für die Zelle und den ganzen Organismus dar. Sie können beim Menschen beispielsweise zu solch komplexen Krankheitsbildern wie Parkinson, Kreutzfeld-Jacob (BSE) und Alzheimer führen. Bei der Qualitätskontrolle kennt die Zelle deshalb kein Pardon, sie überprüft genau, wie die Proteine aussehen und ob sie ihre Arbeit in der Zelle ausführen können.

Forscher am Zentrum für Medizinische Biotechnologie haben jetzt einen Faktor untersucht, der an der Durchführung der Qualitätskontrolle in Bakterien wesentlich beteiligt ist. In der jüngsten Ausgabe von Nature beschreiben die Wissenschaftler neueste Erkenntnisse über das Molekül namens DegP, das über erstaunliche Eigenschaften verfügt: es erkennt defekte Proteine und repariert oder vernichtet diese innerhalb seines Reaktionszentrums. Gleichzeitig werden intakte Proteine von diesem Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort, in diesem Fall die äußere Hülle von Bakterien, transportiert.

... mehr zu:
»Molekül »Protein »Zelle

"Es ist erstaunlich, wie diese beiden gegensätzlichen Funktionen von nur einem Molekül ausgeführt werden können", so Professor Michael Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie." Bei der detaillierten Untersuchung dieses molekularen Aufräumkommandos der Zelle machten die Forschergruppen um Tim Clausen (Wien), Helen Saibil (London) und Michael Ehrmann (Duisburg-Essen) neue interessante Entdeckungen: "Das DegP-Molekül kann seine eigene Größe und Aktivität an seine Kunden, den Proteinen, anpassen", so Professor Ehrmann. Es lagern sich einfach mehrere DegP Moleküle aneinander, bis ein Ziel-Protein vollständig eingekapselt ist. Je größer der entstehende Komplex ist, desto höher ist auch dessen Wirksamkeit.

Der DegP-Apparat überprüft, ob die eingefangenen Proteine richtig gefaltet sind. Bei defekten Proteinen wird innerhalb kurzer Zeit in der Reaktionskammer des Molekülkomplexes die Verdauungsmaschinerie angeworfen und das Eiweiß in seine Bestandteile zerlegt. Bei nur leicht defekten Proteinen dient der DegP-Apparat hingegen als Reparaturwerkstatt. Intakte und reparierte Moleküle werden anschließend an ihren Zielort transportiert, wo sie ihre Aufgabe erfüllen können.

Die neuen Einblicke in die Arbeitsweise von DegP, die in atomarer Auflösung gewonnen wurden, sollen in Zukunft helfen, bakterielle Infektionen besser zu bekämpfen. Werden beispielsweise durch eine heftige Immunantwort viele Proteine in der Zellhülle des Bakteriums geschädigt, so müssen diese möglichst kurzfristig durch neue Proteine ersetzt werden. Diese erhöhte Nachfrage lässt den DegP-Betrieb des Bakteriums innerhalb von kürzester Zeit auf Hochtouren laufen.

"Durch einen hohen DegP-Betrieb sind humanpathogene Bakterien in der Lage, den Immunattacken des menschlichen Körpers immer wieder zu trotzen", so Professor Michael Ehrmann. "Wir sind gerade dabei, die Funktion dieser Müll-Entsorgungsanlage bei Bakterien durch die Entwicklung eines neuen Antibiotikums zu unterbinden. Wenn DegP nicht mehr funktioniert, können die gesundheitsgefährdenden Bakterien nicht mehr im Wirtsorganismus überleben".

Weitere Informationen: Dr. Lydia Didt-Koziel, Tel. 0201/183-3670 , -4640, Lydia.Didt-Koziel@uni-due.de

Redaktion: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Weitere Informationen:
http://www.uni-duisburg-essen.de

Weitere Berichte zu: Molekül Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie