Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Molekül räumt auf: Neue Chancen im Kampf gegen bakterielle Infektionen

21.05.2008
Forscher am Zentrum für Medizinische Biotechnologie an der Universität Duisburg-Essen haben ein Aufräumkommando der Zelle untersucht und berichten darüber in der neuesten Ausgabe (21. Mai) des angesehenen Wissenschaftsmagazins Nature. Im Mittelpunkt steht das Molekül DegP, das defekte Proteine erkennt und in seinem Reaktionszentrum repariert oder vernichtet. Intakte Proteine werden vom Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort transportiert.

Proteine vermitteln alle lebenswichtigen Prozesse in der Zelle. Deshalb betreibt die Zelle einen erheblichen Aufwand, um ihre Eiweiße in der richtigen Form, zum richtigen Zeitpunkt und in der geforderten Menge zu produzieren.

Auch Proteine, die bereits im Einsatz sind, müssen ständig auf Ihre Funktionsfähigkeit hin überwacht werden. Defekte Proteine stellen nämlich eine tödliche Gefahr für die Zelle und den ganzen Organismus dar. Sie können beim Menschen beispielsweise zu solch komplexen Krankheitsbildern wie Parkinson, Kreutzfeld-Jacob (BSE) und Alzheimer führen. Bei der Qualitätskontrolle kennt die Zelle deshalb kein Pardon, sie überprüft genau, wie die Proteine aussehen und ob sie ihre Arbeit in der Zelle ausführen können.

Forscher am Zentrum für Medizinische Biotechnologie haben jetzt einen Faktor untersucht, der an der Durchführung der Qualitätskontrolle in Bakterien wesentlich beteiligt ist. In der jüngsten Ausgabe von Nature beschreiben die Wissenschaftler neueste Erkenntnisse über das Molekül namens DegP, das über erstaunliche Eigenschaften verfügt: es erkennt defekte Proteine und repariert oder vernichtet diese innerhalb seines Reaktionszentrums. Gleichzeitig werden intakte Proteine von diesem Molekül wie in einen kleinen Käfig umschlossen und sicher an Ihren Zielort, in diesem Fall die äußere Hülle von Bakterien, transportiert.

... mehr zu:
»Molekül »Protein »Zelle

"Es ist erstaunlich, wie diese beiden gegensätzlichen Funktionen von nur einem Molekül ausgeführt werden können", so Professor Michael Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie." Bei der detaillierten Untersuchung dieses molekularen Aufräumkommandos der Zelle machten die Forschergruppen um Tim Clausen (Wien), Helen Saibil (London) und Michael Ehrmann (Duisburg-Essen) neue interessante Entdeckungen: "Das DegP-Molekül kann seine eigene Größe und Aktivität an seine Kunden, den Proteinen, anpassen", so Professor Ehrmann. Es lagern sich einfach mehrere DegP Moleküle aneinander, bis ein Ziel-Protein vollständig eingekapselt ist. Je größer der entstehende Komplex ist, desto höher ist auch dessen Wirksamkeit.

Der DegP-Apparat überprüft, ob die eingefangenen Proteine richtig gefaltet sind. Bei defekten Proteinen wird innerhalb kurzer Zeit in der Reaktionskammer des Molekülkomplexes die Verdauungsmaschinerie angeworfen und das Eiweiß in seine Bestandteile zerlegt. Bei nur leicht defekten Proteinen dient der DegP-Apparat hingegen als Reparaturwerkstatt. Intakte und reparierte Moleküle werden anschließend an ihren Zielort transportiert, wo sie ihre Aufgabe erfüllen können.

Die neuen Einblicke in die Arbeitsweise von DegP, die in atomarer Auflösung gewonnen wurden, sollen in Zukunft helfen, bakterielle Infektionen besser zu bekämpfen. Werden beispielsweise durch eine heftige Immunantwort viele Proteine in der Zellhülle des Bakteriums geschädigt, so müssen diese möglichst kurzfristig durch neue Proteine ersetzt werden. Diese erhöhte Nachfrage lässt den DegP-Betrieb des Bakteriums innerhalb von kürzester Zeit auf Hochtouren laufen.

"Durch einen hohen DegP-Betrieb sind humanpathogene Bakterien in der Lage, den Immunattacken des menschlichen Körpers immer wieder zu trotzen", so Professor Michael Ehrmann. "Wir sind gerade dabei, die Funktion dieser Müll-Entsorgungsanlage bei Bakterien durch die Entwicklung eines neuen Antibiotikums zu unterbinden. Wenn DegP nicht mehr funktioniert, können die gesundheitsgefährdenden Bakterien nicht mehr im Wirtsorganismus überleben".

Weitere Informationen: Dr. Lydia Didt-Koziel, Tel. 0201/183-3670 , -4640, Lydia.Didt-Koziel@uni-due.de

Redaktion: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Weitere Informationen:
http://www.uni-duisburg-essen.de

Weitere Berichte zu: Molekül Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise