Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel: Freund oder Feind?

13.05.2008
Verbundprojekt "Bioneers" unter Federführung der Universitäts-HNO-Klinik Mainz untersucht die Wirkung von Nanopartikeln auf menschliche Zellen - Fokus auf Nano-Teilchen, die durch Inhalation in den menschlichen Körper gelangen

Von Lotuseffect-Sprays bis Easy-to-Clean-Textilien: Die Palette der Produkte, deren Wirkung heute schon auf Nanoteilchen beruht, ist schier unerschöpflich. Doch wie der Körper auf die besonderen Inhaltsstoffe reagiert, ist bislang nicht hinreichend bekannt.

Unter der Federführung von Prof. Dr. Roland Stauber vom Universitätsklinikum Mainz fördert die Deutsche Forschungsgemeinschaft (DFG) deshalb ein neues Verbundprojekt, welches die biologische Wirkung von Nanopartikeln untersucht. Dabei wollen die Forscher herausfinden, ob und wie Nanoteilchen in eine Zelle gelangen können und was sie dort auslösen.

Für diese Versuche kann das intersdisziplinäre Wissenschaftlerteam auf modernste molekularbiologische Methoden zurückgreifen, mit denen sich beispielsweise der Weg einzelner Nanopartikel in einer Zelle verfolgen lässt. Eingebunden ist das neue Verbundprojekt in das DFG-Schwerpunkt-Programm "Biological Responses to Nanoscale Particles", welches Anfang des Jahres etabliert wurde.

... mehr zu:
»Nanopartikel »Nanoteilchen

Die Nanotechnologie gilt nicht umsonst als Wachstumsmarkt der Zukunft. Doch die Nutzung der immensen Potenziale erfordert einen verantwortungsvollen Umgang mit der Materie. Denn wie der menschliche Körper auf die "Winzlinge aus der Nano-Welt" reagiert ist bislang nicht hinreichend untersucht. Das Besondere: Nanopartikel sind etwa so groß wie typische Biomoleküle und können deshalb - ähnlich wie Eiweißstoffe - von den Zellen aufgenommen werden.

"Was jedoch passiert in einer Zelle die Nanopartikeln ausgesetzt ist? Über welche Wege werden die winzigen Teilchen von der Zelle aufgenommen? Wie und wohin werden sie innerhalb der Zelle transportiert? Können sie die Erbinformation schädigen und so eventuell zur Krebsentstehung beitragen? Das sind viele Fragen, auf die wir bislang nur wenige Antworten kennen", resümiert Prof. Dr. Roland Stauber von der Mainzer Universitäts-HNO-Klinik. "So zielt unser neues Forschungsprojekt darauf ab, die biologischen Effekte der Kleinstteilchen möglichst umfassend zu analysieren."

Dazu kommen in der Arbeitsgruppe "Molekulare und Zelluläre Onkologie" um Professor Stauber zunächst so genannte DNA-Chips zum Einsatz, mit deren Hilfe beinahe die komplette Genaktivität der Zellen sichtbar wird. "So können wir genau verfolgen, welche genetischen Programme durch die Partikel an- oder abgeschaltet werden", erläutert Prof. Stauber. "Durch die Verwendung menschlicher Zellkulturmodelle als 'lebende Bioreaktoren' lassen sich zudem wichtige Eigenschaften wie Teilungsaktivität oder Erscheinungsbild der Zelle unter dem Mikroskop als Gradmesser für den Gesundheitszustand der Zellen feststellen."

Viele Nanoteilchen - etwa in Sprays oder im Feinstaub - verbreiten sich hauptsächlich über die Luft und könnten über die Epithelzellen, die die Atemwege auskleiden, aufgenommen werden und letztendlich in den Blutkreislauf gelangen. "Deshalb konzentrieren wir uns auf Epithelzellen der Schleimhäute und des Lungen- bzw. Bronchialgewebes, die als realitätsnahe Modellsysteme dienen und in der Arbeitsgruppe von Prof. Charles James Kirkpatrick in Mainz etabliert sind. Um das 'Lungenmodell im Reagenzglas' zu perfektionieren wird zusätzlich in Zusammenarbeit mit Prof. Hans-Joachim Galla von der Universität Münster das so genannte 'Lungen-Surfaktant' - also der biologisch komplexe aber lebenswichtige Feuchtigkeitsfilm auf der Oberfläche der Lungenzellen - in die Untersuchungen mit einbezogen."

Schließlich muss auch die Struktur der Nanoteilchen, die auf die Zellen losgelassen werden, genau bekannt sein: Deshalb wollen die Forscher zusammen mit Hochschuldozent Dr. Michael Maskos vom Institut für Physikalische Chemie der Universität Mainz die jeweiligen Nanopartikel durch einen physikalisch-chemischen "Bar-Code" genau charakterisieren und zusätzlich farbmarkieren. "So können wir unter dem Fluoreszenz-Mikroskop immer kontrollieren, ob die Teilchen in der Zellnährlösung tatsächlich suspendiert vorliegen oder abweichend von den definierten Versuchsbedingungen verklumpen", erläutert Prof. Stauber. "Alles in allem wollen wir durch die Zusammenarbeit verschiedener Arbeitsgruppen und fachlicher Disziplinen - die jeweils ihre ganz spezielle Expertise einbringen - das 'Lungenmodell im Reagenzglas' möglichst realistisch nachstellen."

"Wir hoffen, dass die Ergebnisse aus dem DFG-Schwerpunktprogramm - zu dem unser Verbundprojekt gehört - eine abschließende Risikoabschätzung bezüglich der Verwendung von Nanopartikeln ermöglichen", blickt Prof. Stauber in die Zukunft. "Das dadurch erzielte molekulare Verständnis der vielfältigen Wechselwirkungen von Nanopartikeln mit menschlichen Zellen soll darüber hinaus aber auch für weitergehende biomedizinische Anwendungen zum Wohle der Patienten genutzt werden."

KONTAKT:
Univ.-Prof. Dr. Roland H. Stauber, Molekulare und Zelluläre Onkologie
Klinikum der Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131 Mainz
Tel.: (06131) 17 70 02 / 6030, Fax: (06131) 17 66 71
E-mail: rstauber@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.stauber-lab.de
http://www.uni-mainz.de/

Weitere Berichte zu: Nanopartikel Nanoteilchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften